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In a previous work, we started investigating the concept of hyperconvexity in quasipseudometric
spaces whichwe called q-hyperconvexity or Isbell-convexity. In this paper, we continue our studies
of this concept, generalizing further known results about hyperconvexity from themetric setting to
our theory. In particular, in the present paper, we consider subspaces of q-hyperconvex spaces and
also present some fixed point theorems for nonexpansive self-maps on a bounded q-hyperconvex
quasipseudometric space. In analogy with a metric result, we show among other things that a
set-valued mapping T ∗ on a q-hyperconvex T0-quasimetric space (X, d) which takes values in the
space of nonempty externally q-hyperconvex subsets of (X, d) always has a single-valued selection
Twhich satisfies d(T(x), T(y)) ≤ dH(T ∗(x), T ∗(y))whenever x, y ∈ X. (Here, dH denotes the usual
(extended) Hausdorff quasipseudometric determined by d on the set P0(X) of nonempty subsets
of X.)

1. Introduction

In a previous work, we started investigating a concept of hyperconvexity in quasipseu-
dometric spaces, which we called q-hyperconvexity or Isbell-convexity (see [1], compare
[2]). In this paper, we continue our studies of this concept by generalizing further known
results about hyperconvexity from the metric setting to our theory. Among other things,
in the present paper we consider subspaces of q-hyperconvex spaces and also present
some fixed point theorems. In particular, we show that a set-valued mapping T ∗ on a
q-hyperconvex T0-quasimetric space (X, d) which takes values in the space of nonempty
externally q-hyperconvex subsets of (X, d) always has a single-valued selection T which
satisfies d(T(x), T(y)) ≤ dH(T ∗(x), T ∗(y)) whenever x, y ∈ X. (Here, dH denotes the usual



2 Journal of Function Spaces and Applications

(extended) Hausdorff quasipseudometric determined by d on the set P0(X) of nonempty
subsets of X.)

Our investigations confirm the surprising fact that many classical results about
hyperconvexity in metric spaces do not make essential use of the symmetry of the metric
and, therefore, still hold—in a sometimes slightly modified form—for our concept of q-
hyperconvexity in quasipseudometric spaces (see also [3] for a more general approach).

For the basic facts concerning quasipseudometrics and quasiuniformities we refer the
reader to [4, 5]. Some recent work about quasipseudometric spaces can be found in the
articles [6–9].

2. Preliminaries

In order to fix the terminology, we start with some basic concepts.

Definition 2.1. Let X be a set and let d : X × X → [0,∞) be a function mapping into the set
[0,∞) of the nonnegative reals. Then, d is called a quasipseudometric on X if

(a) d(x, x) = 0 whenever x ∈ X,

(b) d(x, z) ≤ d(x, y) + d(y, z) whenever x, y, z ∈ X.

We will say that d is a T0-quasimetric provided that d also satisfies the following
condition: for each x, y ∈ X,

d
(
x, y

)
= 0 = d

(
y, x

)
implies that x = y. (2.1)

Remark 2.2. Let d be a quasipseudometric on a set X, then d−1 : X × X → [0,∞) defined
by d−1(x, y) = d(y, x) whenever x, y ∈ X is also a quasipseudometric, called the conjugate
quasipseudometric of d. As usual, a quasipseudometric d on X such that d = d−1 is called a
pseudometric. Note that for any (T0)-quasipseudometric d, the function ds = max{d, d−1} =
d ∨ d−1 is a pseudometric (metric).

For any a, b ∈ [0,∞), we will set a−̇b = max{a − b, 0}.
Let (X, d) be a quasipseudometric space. For each x ∈ X and ε > 0, the set Bd(x, ε) =

{y ∈ X : d(x, y) < ε} denotes the open ε-ball at x. The collection of all “open” balls yields a
base for a topology τ(d). It is called the topology induced by d on X. Similarly, for each x ∈ X
and ε ≥ 0, we define the ball Cd(x, ε) = {y ∈ X : d(x, y) ≤ ε}. Note that this latter set is
τ(d−1)-closed, but not τ(d)-closed in general. As usual, in the theory of quasiuniformities,
for a subset A of X and ε > 0, we will also use notations like Bd(A, ε) =

⋃
a∈A Bd(a, ε) and

similarly Cd(A, ε) =
⋃

a∈A Cd(a, ε).
A pair (Cd(x, r);Cd−1(x, s))with x ∈ X and nonnegative reals r, swill be called a double

ball at x.
We shall also speak of a family [(Cd(xi, ri))i∈I ; (Cd−1(xi, si))i∈I] of double balls, with

xi ∈ X and ri, si ≥ 0 whenever i ∈ I.
Let (X, d) be a quasipseudometric space and let P0(X) be the set of all nonempty

subsets of X. Given C ∈ P0(X), we will set dist (x,C) = inf{d(x, c) : c ∈ C} and
dist (C, x) = inf{d(c, x) : c ∈ C}whenever x ∈ X.
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For any A,B ∈ P0(X), we set

dH(A,B) = max

{

sup
b∈B

dist(A, b), sup
a∈A

dist(a, B)

}

(2.2)

(compare [10]).
Then dH , is the so-called extended (as usual, a quasipseudometric that maps into

[0,∞] (instead of [0,∞)) will be called extended) Hausdorff(-Bourbaki) quasipseudometric on
P0(X). It is known that dH is an extended T0-quasimetric when restricted to the set of all the
nonempty subsets A of X which satisfy A = clτ(d)A ∩ clτ(d−1)A (compare [11, page 164]).

A map f : (X, d) → (Y, e) between two quasipseudometric spaces (X, d) and (Y, e)
is called an isometry or isometric map provided that e(f(x), f(y)) = d(x, y) whenever
x, y ∈ X. Two quasipseudometric spaces (X, d) and (Y, e) will be called isometric provided
that there exists a bijective isometry f : (X, d) → (Y, e). A map f : (X, d) → (Y, e)
between two quasipseudometric spaces (X, d) and (Y, e) is called nonexpansive provided that
e(f(x), f(y)) ≤ d(x, y) whenever x, y ∈ X.

The following definitions can be found in [1] (compare [12]).

Definition 2.3 (see [1, Definition 2]). A quasipseudometric space (X, d) is called q-
hyperconvex (or Isbell-convex) provided that for each family (xi)i∈I of points in X and
families (ri)i∈I and (si)i∈I of nonnegative real numbers satisfying d(xi, xj) ≤ ri + sj whenever
i, j ∈ I, the following condition holds:

⋂

i∈I
(Cd(xi, ri) ∩ Cd−1(xi, si))/= ∅. (2.3)

Definition 2.4 (see [1, Definition 5]). Let (X, d) be a quasipseudometric space. A family of
double balls [(Cd(xi, ri))i∈I ; (Cd−1(xi, si))i∈I] with ri, si ∈ [0,∞) and xi ∈ X whenever i ∈ I
is said to have the mixed binary intersection property if for all indices i, j ∈ I, Cd(xi, ri) ∩
Cd−1(xj , sj)/= ∅.

Definition 2.5 (see [1, Definition 6]). A quasipseudometric space (X, d) is called q-
hypercomplete (or Isbell-complete) if every family

[(Cd(xi, ri))i∈I ; (Cd−1(xi, si))i∈I] (2.4)

of double balls, where ri, si ≥ 0 and xi ∈ X whenever i ∈ I, having the mixed binary
intersection property satisfies

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si))/= ∅.

Definition 2.6 (see [1, Definition 4]). Let (X, d) be a quasipseudometric space. We say that X
is metrically convex if for any points x, y ∈ X and nonnegative real numbers r and s such
that d(x, y) ≤ r + s, there exists z ∈ X such that d(x, z) ≤ r and d(z, y) ≤ s.

The following useful result was established in [1, Proposition 1]. A quasipseudometric
space (X, d) is q-hyperconvex if and only if it is metrically convex and q-hypercomplete.

As usual, a subset A of a quasipseudometric space (X, d) will be called bounded
provided that there is a positive real constant M such that d(x, y) < M whenever x, y ∈ A.
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Note that a subset A of (X, d) is bounded if and only if there are x ∈ X and r, s ≥ 0 such that
A ⊆ Cd(x, r) ∩ Cd−1(x, s).

3. Some First Results

Proposition 3.1 (compare [13, Proposition 4.5]). Let (X, d) be a q-hyperconvex quasipseudometric
space. Let (xi)i∈I be a nonempty family of points in X and let (ri)i∈I and (si)i∈I be two families of
nonnegative reals such that d(xi, xj) ≤ ri + sj . Set D =

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)). Then D is

nonempty and q-hyperconvex.

Proof. Note first that D/= ∅ by q-hyperconvexity of X. For each α ∈ S, let xα ∈ D and let rα, sα
be nonnegative reals such that d(xα, xβ) ≤ rα + sβ whenever α, β ∈ S.

We show that the family

[(Cd(xα, rα))α∈S, (Cd(xi, ri))i∈I ; (Cd−1(xα, sα))α∈S, (Cd−1(xi, si))i∈I] (3.1)

satisfies the hypothesis of q-hyperconvexity. Indeed, in particular, for each α ∈ S and i ∈ I,
we have that d(xα, xi) ≤ si ≤ rα + si and d(xi, xα) ≤ ri ≤ ri + sα.

Hence, by q-hyperconvexity of X, we have that

∅/=
⋂

i∈I
(Cd(xi, ri) ∩ Cd−1(xi, si)) ∩

⋂

α∈S
(Cd(xα, rα) ∩ Cd−1(xα, sα))

= D ∩
⋂

α∈S
(Cd(xα, rα) ∩ Cd−1(xα, sα)).

(3.2)

Hence, the subspace D of X is q-hyperconvex.

Let (X, d) be a quasipseudometric space. For a nonempty bounded subset A of X, we
set

bicov (A)+ =
⋂

{Cd(x, r) : A ⊆ Cd(x, r), x ∈ X, r ≥ 0},

bicov (A)− =
⋂

{Cd−1(x, s) : A ⊆ Cd−1(x, s), x ∈ X, s ≥ 0}.
(3.3)

Furthermore, we define the bicover of A by bicov (A) := bicov (A)+ ∩ bicov (A)−.
A nonempty bounded setA in a quasipseudometric space (X, d) that can be written as

the intersection of a nonempty family of sets of the form Cd(x, ε1)∩Cd−1(x, ε2)where ε1, ε2 ≥ 0
and x ∈ X, that is, A = bicov A, will be called q-admissible in the following. By Aq(X), we
will denote the set of q-admissible subsets of X. Note that if (X, d) is q-hyperconvex, then any
member of Aq(X) is q-hyperconvex in the light of Proposition 3.1.

Let (X, d) be a quasipseudometric space and let A be a nonempty bounded subset in
(X, d). Then, in accordance with [13, page 79], we can define the cover covA of A as follows:
cov A =

⋂{Cds(x) : A ⊆ Cds(x), x ∈ X}. Obviously, we have A ⊆ bicov (A) ⊆ cov (A). The
latter inclusion can be strict, as our first example shows.

Example 3.2. Let X = [0, 1] × [1/4, 3/4] be equipped with the T0-quasimetric d defined by
d((α, β), (α′, β′)) = (α−̇α′) ∨ (β−̇β′)whenever (α, β), (α′, β′) ∈ X.
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Consider A = {(0, 1/2), (1, 1/2)} ⊆ X. Then, bicov (A) is equal to the line segment
in X from x = (0, 1/2) to y = (1, 1/2). This follows from the fact that, for each ε ∈ [0, 1/4],
we have x ∈ [0, 1] × [1/4, (1/2) + ε] = Cd−1(y, ε) and y ∈ [0, 1] × [(1/2) − ε, 3/4] = Cd(x, ε),
and that the line segment is a subset of any set of the form Cd(a, r) ∩ Cd−1(b, s) for which
{x, y} ⊆ Cd(a, r) ∩ Cd−1(b, s). Indeed, assume that the point z belongs to this segment. Then
d(z, y) = 0 = d(x, z) and, therefore, z ∈ Cd(a, r) ∩ Cd−1(b, s) by the triangle inequality.

On the other hand, cov(A) = X, since {x, y} ⊆ Cds(z, ε) with z ∈ X implies that
ε ≥ 1/2. Indeed, assume that z = (a, b) ∈ X. Then, a ≤ ds((a, b), (0, 1/2)) ≤ ε and 1 − a ≤
ds((a, b), (1, 1/2)) ≤ ε. Thus, ε ≥ max{a, 1 − a} ≥ 1/2 with a ∈ [0, 1]. In the light that the
interval [1/4, 3/4] has length 1/2, it follows that X ⊆ Cds(z, ε). Therefore, cov(A) = X.

By the results of [1, Example 1], (bicov(A), d) is q-hyperconvex, while the metric space
(bicov(A), ds) is hyperconvex [1, Proposition 2], but not q-hyperconvex (see [1, Example 2]).

The following result gives a quasipseudometric variant of a well-known result usually
attibuted to Sine [14] (compare also [15]).

Theorem 3.3. If (X, d) is a bounded q-hyperconvex T0-quasimetric space and if T : (X, d) → (X, d)
is a nonexpansive map, then the fixed point set Fix(T) of T in (X, d) is nonempty and q-hyperconvex.

Proof. We first show that Fix(T)/= ∅. Note that T : (X, ds) → (X, ds) is nonexpansive, since
for any x, y ∈ X, we have d(Tx, Ty) ≤ d(x, y) and d(Ty, Tx) ≤ d(y, x), and thus ds(Tx, Ty) ≤
ds(x, y). By assumption (X, ds) is bounded. Furthermore, (X, ds) is a hyperconvex space
according to [1, Proposition 2]. So, by [13, Theorem 4.8], we know that T has a fixed point
and Fix(T) is hyperconvex in (X, ds).

We need to show that Fix(T) is indeed q-hyperconvex. Let

[(Cd(xi, ri))i∈I ; (Cd−1(xi, si))i∈I] (3.4)

be a nonempty family of double balls, where xi ∈ Fix(T) and (ri)i∈I and (si)i∈I are two
families of nonnegative reals such that d(xi, xj) ≤ ri + sj whenever i, j ∈ I. Since X is a q-
hyperconvex T0-quasimetric space, the set

X0 =
⋂

i∈I
(Cd(xi, ri) ∩ Cd−1(xi, si))/= ∅. (3.5)

Let x ∈ X0. Then, d(T(x), xi) = d(T(x), T(xi)) ≤ d(x, xi) ≤ si and

d(xi, T(x)) = d(T(xi), T(x)) ≤ d(xi, x) ≤ ri (3.6)

whenever i ∈ I. Thus, T(x) ∈ X0 and we have T : X0 → X0.
Moreover, X0 is a bounded q-hyperconvex T0-quasimetric space by Proposition 3.1. So

the first part of the proof implies that T has a fixed point in X0, which implies that Fix(T) ∩
[
⋂

i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)]/= ∅. We have shown that Fix(T) is q-hyperconvex.

4. Chains of q-Hyperconvex Subspaces

In this section, we will prove the analogue of a famous theorem due to Baillon [16].



6 Journal of Function Spaces and Applications

Theorem 4.1. Let (X, d) be a bounded T0-quasimetric space and let (Hi)i∈I be a descending family of
nonempty q-hyperconvex subsets of X, where one assumes that I is totally ordered such that i1, i2 ∈ I
and i1 ≤ i2 hold if and only if Hi2 ⊆ Hi1 . Then,

⋂
i∈I Hi is nonempty and q-hyperconvex.

Proof. We begin by showing that
⋂

i∈I Hi /= ∅. We first note that (X, ds) is a bounded metric
space and (Hi)i∈I is a descending chain of hyperconvex sets in (X, ds) by [1, Proposition 2].
By the well-known result of Baillon [16, Theorem 7], we conclude that

⋂
i∈I Hi is nonempty

and hyperconvex in (X, ds).
In order to complete the proof, we need to show thatH =

⋂
i∈I Hi is q-hyperconvex. Let

a nonempty family (xα)α∈S of points in H and families of nonnegative real numbers (rα)α∈S
and (sα)α∈S be given such that d(xα, xβ) ≤ rα + sβ whenever α, β ∈ S. Fix i ∈ I. Since Hi is a
q-hyperconvex space and since xα ∈ Hi whenever α ∈ S, therefore, Di =

⋂
α∈S(Cd(xα, rα) ∩

Cd−1(xα, sα)) ∩Hi is nonempty and q-hyperconvex by the proof of Proposition 3.1 and thus a
hyperconvex subset of (X, ds) by [1, Proposition 2].

Thus by the first part of our present proof,

∅/=
⋂

i∈I
Di =

⋂

i∈I

[
⋂

α∈S
(Cd(xα, rα) ∩ Cd−1(xα, sα)) ∩Hi

]

=
⋂

α∈S
(Cd(xα, rα) ∩ Cd−1(xα, sα)) ∩

⋂

i∈I
Hi,

(4.1)

since (Di)i∈I is descending. This proves thatH =
⋂

i∈I Hi is q-hyperconvex.

Definition 4.2. Let (X, d) be a T0-quasimetric space and let a family of nonexpansive maps
(Ti)i∈I , with Ti : (X, d) → (X, d), be given. We say that (Ti)i∈I is a commuting family if
Ti ◦ Tj = Tj ◦ Ti whenever i, j ∈ I.

Our next lemma is motivated by [16, Corollary 8].

Lemma 4.3. If (Hα)α∈S is a family of bounded q-hyperconvex subsets of a T0-quasimetric space X
such that

⋂
α∈F Hα is nonempty and q-hyperconvex whenever F ⊆ S is finite, then the intersection⋂

α∈S Hα is nonempty and q-hyperconvex.

Proof. ConsiderF = {I ⊆ S : for all J finite, J ⊆ S,
⋂

I∪J Hα is nonempty and q-hyperconvex}.
Obviously ∅ ∈ F and F satisfies the hypothesis of Zorn’s lemma because of

Theorem 4.1. Let I be maximal in F. Then, I ∪ {α} ∈ F whenever α ∈ S. Because of the
maximality of I, we, therefore, have α ∈ I whenever α ∈ S.

The next result is a consequence of Theorems 3.3 and 4.1. It is analogous to [17,
Theorem 6.2].

Theorem 4.4. Let (X, d) be a bounded q-hyperconvex T0-quasimetric space. Any commuting family
of nonexpansive maps (Ti)i∈I , with Ti : (X, d) → (X, d), has a common fixed point. Moreover, the
common fixed point set

⋂

i∈I
Fix(Ti), (4.2)

is q-hyperconvex.
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Proof. We observe that (X, ds) is a bounded hyperconvex metric space by [1, Proposition 2],
and for each i ∈ I, the map Ti : (X, ds) → (X, ds) is nonexpansive, as we noted before (see
proof of Theorem 3.3). By Theorem 3.3, each Ti has a fixed point. Hence, there is x ∈ X such
that Ti(x) = x. We now show that, given any j ∈ I, we have that Tj(Fix(Ti)) ⊆ Fix(Ti) Indeed,
if for some x ∈ X, we have x = Ti(x), then Tj(x) = Tj(Ti(x)) = Ti(Tj(x)). So Tj(x) ∈ Fix(Ti).

By Theorem 3.3, we conclude that Tj : Fix(Ti) → Fix(Ti) has a fixed point y ∈ Fix(Ti),
which then is a fixed point of Ti and Tj . Therefore, the set of common fixed points of
Ti and Tj is q-hyperconvex by Theorem 3.3. Hence, by induction for each finite family
(Ti)i∈F of nonexpansive self-maps on X the set of common fixed points is nonempty and
q-hyperconvex.

Since
⋂

i∈F Fix(Ti) is nonempty subset and q-hyperconvex whenever F is a finite subset
of I, by Lemma 4.3 we conclude that

⋂
i∈I Fix(Ti) is nonempty and q-hyperconvex.

5. Approximate Fixed Points

In this section, we investigate the approximation of fixed points by generalizing some
results from [13] (compare [18]). We first define an ε1, ε2-parallel set of a subset in a
quasipseudometric space similarly to [13, page 89].

Definition 5.1. Let (X, d) be a quasipseudometric space. Given a subset A of X, we define for
ε1, ε2 ≥ 0 the ε1, ε2-parallel set of A as

Nε1,ε2(A) =
⋃

a∈A
(Cd(a, ε2) ∩ Cd−1(a, ε1)). (5.1)

(Note that for each ε > 0 in particular Nε,ε(A) =
⋃

a∈A Cds(a, ε).)
Thus, x ∈ Nε1,ε2(A) if and only if there exists a ∈ A such that d(a, x) ≤ ε2 and

d−1(a, x) ≤ ε1.
We next give a characterization of Nε1,ε2(A) if A is a q-admissible set in a q-

hyperconvex quasipseudometric space (compare [13, Lemma 4.2]).

Lemma 5.2. Let (X, d) be a q-hyperconvex quasipseudometric space and let A be a q-admissible
subset of X, say ∅/=A =

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) with xi ∈ X and ri, si nonnegative reals

whenever i ∈ I /= ∅. Then, for each ε1, ε2 ≥ 0,

Nε1,ε2(A) =
⋂

i∈I
(Cd(xi, ri + ε2) ∩ Cd−1(xi, si + ε1)). (5.2)

Proof. Suppose that y ∈ Nε1,ε2(A). Then, d(a, y) ≤ ε2 and d(y, a) ≤ ε1 for some a ∈ A. But for
each i ∈ I,

d
(
xi, y

) ≤ d(xi, a) + d
(
a, y

) ≤ ri + ε2,

d
(
y, xi

) ≤ d
(
y, a

)
+ d(a, xi) ≤ ε1 + si.

(5.3)

Then, for each i ∈ I, we have y ∈ Cd(xi, ri + ε2) and y ∈ Cd−1(xi, si + ε1). This proves that
Nε1,ε2(A) ⊆ ⋂

i∈I(Cd(xi, ri + ε2) ∩ Cd−1(xi, si + ε1)).
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Now suppose that y ∈ ⋂
i∈I(Cd(xi, ri + ε2) ∩ Cd−1(xi, si + ε1)) and let i ∈ I.

Hence,

d
(
xi, y

) ≤ ri + ε2,

d
(
y, xi

) ≤ ε1 + si.
(5.4)

By definition of A and the triangle inequality, for any a ∈ A and any i, j ∈ I we must have
that

d
(
xi, xj

) ≤ d(xi, a) + d
(
a, xj

) ≤ ri + sj . (5.5)

Hence, [(Cd(xi, ri))i∈I , Cd(y, ε1); (Cd−1(xi, si))i∈I , Cd−1(y, ε2)] satisfies the hypothesis in the
definition of q-hyperconvexity of (X, d).

So, by q-hyperconvexity of X,

∅/=
(
⋂

i∈I
Cd(xi, ri)

)

∩ Cd

(
y, ε1

) ∩
(
⋂

i∈I
Cd−1(xi, si)

)

∩ Cd−1
(
y, ε2

)

=
⋂

i∈I
(Cd(xi, ri) ∩ Cd−1(xi, si)) ∩

(
Cd

(
y, ε1

) ∩ Cd−1
(
y, ε2

))

= A ∩ (
Cd

(
y, ε1

) ∩ Cd−1
(
y, ε2

))
.

(5.6)

Therefore, there is a ∈ A such that d(y, a) ≤ ε1 and d(a, y) ≤ ε2. Hence, y ∈ Nε1,ε2(A)
and the proof is complete.

The following lemma will be needed in our discussion below of approximate fixed
point sets.

Lemma 5.3 (compare [13, Lemma 4.3]). Suppose that (X, d) is a q-hyperconvex T0-quasimetric
space and let A be a q-admissible subset of X. Then, for each ε1, ε2 ≥ 0 there is a nonexpansive
retraction R of Nε1,ε2(A) onto A which has the property that d(x,R(x)) ≤ ε1 and d(R(x), x) ≤ ε2
whenever x ∈ Nε1,ε2(A).

Proof. Assume ∅/=A =
⋂

i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) with I /= ∅. By Lemma 5.2, we know that
Nε1,ε2(A) is q-admissible in (X, d) and soNε1,ε2(A) is itself q-hyperconvex by Proposition 3.1.
Consider the family F = {(D,RD) : A ⊆ D ⊆ Nε1,ε2(A) and RD : D → A is a nonexpansive
retraction such that d(x,R(x)) ≤ ε1 and d(R(x), x) ≤ ε2 whenever x ∈ D}.

Let Id denote the identity map on A. Note that (A, Id) ∈ F. So F/= ∅. If one partially
orders F in the usual way ((D,RD) � (H,RH) if and only if D ⊆ H and RH is an extension
of RD), then each chain in (F,�) is bounded above. So by Zorn’s lemma F has a maximal
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element which we denote by (D,RD). We need to show that D = Nε1,ε2(A). Suppose that
there exists x ∈ Nε1,ε2(A) such that x /∈ D, and consider the set

C =

[
⋂

w∈D
(Cd(RD(w), d(w,x)) ∩ Cd−1(RD(w), d(x,w)))

]

∩
[
⋂

i∈I
(Cd(xi, ri) ∩ Cd−1(xi, si))

]

∩ [Cd(x, ε1) ∩ Cd−1(x, ε2)].

(5.7)

First, we want to show that C/= ∅, and in order to do this by [1, Proposition 1], we need only
to show that the family

[(Cd(RD(w), d(w,x)))w∈D, (Cd(xi, ri))i∈I , Cd(x, ε1) ;

(Cd−1(RD(w), d(x,w)))w∈D, (Cd−1(xi, si))i∈I , Cd−1(x, ε2)]
(5.8)

of double balls has the mixed binary intersection property.
First note that if w1, w2 ∈ D, then

d(RD(w1), RD(w2)) ≤ d(w1, w2) ≤ d(w1, x) + d(x,w2). (5.9)

Therefore, Cd(RD(w1), d(w1, x)) and Cd−1(RD(w2), d(x,w2)) intersect by metric convexity of
(X, d).

Furthermore, by the definition of A, for each i, j ∈ I, we see that Cd(xi, ri) and
Cd−1(xj , sj) intersect.

Also for each w ∈ D, RD(w) ∈ A =
⋂

i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)). Hence, for any w ∈ D
and i ∈ I, Cd(RD(w), d(w,x)) and Cd−1(xi, si) intersect, as well as for any w ∈ D and i ∈
I, Cd−1(RD(w), d(x,w)) and Cd(xi, ri) intersect.

Since

x ∈ Nε1,ε2(A) =
⋂

i∈I
(Cd(xi, ri + ε2) ∩ Cd−1(xi, si + ε1)), (5.10)

by Lemma 5.2 there is a ∈ A such that x ∈ Cd(a, ε2) ∩ Cd−1(a, ε1) and, therefore, (Cd(x, ε1) ∩
Cd−1(x, ε2)) ∩ (Cd(xi, ri) ∩ Cd−1(xi, si))/= ∅whenever i ∈ I.

Finally, if w ∈ D, then by assumption on RD,

d(RD(w), x) ≤ d(RD(w), w) + d(w,x) ≤ ε2 + d(w,x),

d(x,RD(w)) ≤ d(x,w) + d(w,RD(w)) ≤ d(x,w) + ε1.
(5.11)

Thus, by metric convexity of (X, d), we have that Cd(RD(w), d(w,x)) and Cd−1(x, ε2) intersect
as well as Cd−1(RD(w), d(x,w)) and Cd(x, ε1) intersect.

Of course, Cd(x, ε1) and Cd−1(x, ε2) intersect.
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We have shown that the family

[Cd(RD(w), d(w,x))w∈D, (Cd(xi, ri))i∈I , Cd(x, ε1) ;

Cd−1(RD(w), d(x,w))w∈D, (Cd−1(xi, si))i∈I , Cd−1(x, ε2)]
(5.12)

of double balls has the mixed binary intersection property.
Hence, ∅/=C ⊆ A. Now, let u ∈ C and define R′ : D ∪ {x} → A by setting R′(w) =

RD(w) if w ∈ D and R′(x) = u. Then, for each w ∈ D, we have

d
(
R′(x), R′(w)

)
= d(u,RD(w)) ≤ d(x,w),

d
(
R′(w), R′(x)

)
= d(RD(w), u) ≤ d(w,x),

(5.13)

so that R′ is nonexpansive. Also, d(R′(x), x) = d(u, x) ≤ ε2 and d(x,R′(x)) = d(x, u) ≤ ε1.
Therefore, we conclude that the pair (D ∪ {x}, R′) contradicts the maximality of (D,RD) in
(F,�). Consequently, D = Nε1,ε2(A) and we are done.

Definition 5.4 (compare [19] and [20]). Let (X, d) be a T0-quasimetric space. We say that a
map T : (X, d) → (X, d) has approximate fixed points if infx∈Xds(x, T(x)) = 0.

Definition 5.5. Let (X, d) be a T0-quasimetric space. For a map T : (X, d) → (X, d) and for
any ε1, ε2 ≥ 0, we use Fε1,ε2(T) to denote the set of ε1, ε2-approximate fixed points of T ; that is,
Fε1,ε2(T) = {x ∈ X : d(x, T(x)) ≤ ε2 and d(T(x), x) ≤ ε1}.

Theorem 5.6 (compare [13, Theorem 4.11]). Suppose that (X, d) is a q-hyperconvex T0-
quasimetric space and that the map T : (X, d) → (X, d) is nonexpansive. Furthermore suppose
that for some ε1, ε2 ≥ 0 one has that Fε1 ,ε2(T) is nonempty. Then, the set Fε1,ε2(T) is q-hyperconvex.

Proof. For each i in some nonempty index set I, let xi ∈ Fε1,ε2(T), and let ri ≥ 0 and si ≥ 0
satisfy

d
(
xi, xj

) ≤ ri + sj . (5.14)

We need to show that

[
⋂

i∈I
(Cd(xi, ri) ∩ Cd−1(xi, si))

]

∩ Fε1,ε2(T)/= ∅. (5.15)

We know that ∅/= J =
⋂

i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) is q-hyperconvex according to
Proposition 3.1, since (X, d) is q-hyperconvex. Furthermore, J is obviously bounded in (X, d).

Also, if x ∈ J , then for each i ∈ I,

d(xi, T(x)) ≤ d(xi, T(xi)) + d(T(xi), T(x)) ≤ ε2 + d(xi, x) ≤ ε2 + ri,

d(T(x), xi) ≤ d(T(x), T(xi)) + d(T(xi), xi) ≤ d(x, xi) + ε1 ≤ si + ε1.
(5.16)
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This proves that T(x) ∈ Nε1,ε2(J) by Lemma 5.2. Now, by Lemma 5.3, there is a
nonexpansive retraction R of Nε1,ε2(J) onto J for which d(R(x), x) ≤ ε2 and d(x,R(x)) ≤ ε1
whenever x ∈ Nε1,ε2(J). Also since R ◦ T is a nonexpansive map of J into J , it must have a
fixed point by Theorem 3.3.

Suppose that (R ◦ T)(x0) = x0 for some x0 ∈ J . Then,

d(x0, T(x0)) = d((R ◦ T)(x0), T(x0)) ≤ ε2,

d(T(x0), x0) = d(T(x0), (R ◦ T)(x0)) ≤ ε1.
(5.17)

Thus, the proof is complete, since x0 ∈ J ∩ Fε1,ε2(T).

6. External q-Hyperconvexity

We next define an externally q-hyperconvex subset of a quasipseudometric space (X, d) in
analogy to [17, Definition 3.5]. Note that this definition strengthens the concept of a q-
hyperconvex subset of (X, d) (compare also [21, Definition 3]).

Definition 6.1. Let (X, d) be a quasipseudometric space. A subspace E of (X, d) is said to be
externally q-hyperconvex (relative toX) if given any family (xi)i∈I of points inX and families
of nonnegative real numbers (ri)i∈I and (si)i∈I the following condition holds:

if d(xi, xj) ≤ ri + sj whenever i, j ∈ I, dist(xi, E) ≤ ri and dist(E, xi) ≤ si whenever
i ∈ I, then

⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) ∩ E/= ∅.

In the following, Eq(X) will denote the set of nonempty externally q-hyperconvex
subsets of (X, d).

Example 6.2 (compare [21, Theorem 7]). Let E be a nonempty externally q-hyperconvex
subset in a quasipseudometric space (X, d) and let x be any point of X. Set dist(x, E) = r
and dist(E, x) = s. Then, by applying external q-hyperconvexity of E to the double ball
(Cd(x, r);Cd−1(x, s)), we conclude that there is p ∈ Cd(x, r) ∩ Cd−1(x, s) ∩ E. Thus, d(x, p) =
dist(x, E) and d(p, x) = dist(E, x).

Lemma 6.3 (compare [17, Lemma 3.8]). Let (X, d) be a q-hyperconvex space and let x ∈ X.
Furthermore, let ∅/=A =

⋂
i∈I(Cd(xi, ri)∩Cd−1(xi, si))where (xi)i∈I is a nonempty family of points in

X and (ri)i∈I and (si)i∈I are families of nonnegative reals. Then, there is p ∈ A such that dist(x,A) =
d(x, p) and dist(A,x) = d(p, x).

Proof. Evidently,

[(Cd(xi, ri))i∈I , (Cd(x,dist(x,A) + ε))ε>0 ;

(Cd−1(xi, si))i∈I , (Cd−1(x,dist(A,x) + ε))ε>0]
(6.1)
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satisfies the mixed binary intersection property. Thus, there is

p ∈ A ∩ Cd(x,dist(x,A)) ∩ Cd−1(x,dist(A,x)) (6.2)

by q-hyperconvexity of (X, d). Obviously, p then satisfies the stated condition.

The following lemma, which makes use of Lemma 6.3, will be useful in the proof
of Theorem 6.5. Considering the case that E = X, we see that Lemma 6.4 improves on
Proposition 3.1.

Lemma 6.4 (compare [18, Lemma 2]). Let (X, d) be a q-hyperconvex quasipseudometric space.
Suppose that E ⊆ X is externally q-hyperconvex relative to X and suppose that A is a q-admissible
subset of (X, d) such that E ∩A/= ∅. Then E ∩A is externally q-hyperconvex relative to X.

Proof. Assume that a given nonempty family (xα)α∈S of points in X and families of
nonnegative real numbers (rα)α∈S and (sα)α∈S satisfy d(xα, xβ) ≤ rα + sβ, dist(xα,A ∩ E) ≤ rα,
and dist(A ∩ E, xα) ≤ sα whenever α, β ∈ S.

Since A is q-admissible, ∅/=A =
⋂

i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) with xi ∈ X and ri, si ≥ 0
whenever i ∈ I. Because dist(xα,A) ≤ dist(xα,A∩E) ≤ rα and dist(A,xα) ≤ dist(A∩E, xα) ≤
sα whenever α ∈ S, it follows that for each α ∈ S, i ∈ I and for p ∈ A chosen according to
Lemma 6.3 we have

d(xα, xi) ≤ d
(
xα, p

)
+ d

(
p, xi

) ≤ rα + si,

d(xi, xα) ≤ d
(
xi, p

)
+ d

(
p, xα

) ≤ ri + sα.
(6.3)

Also, since for each i ∈ I, A ⊆ Cd(xi, ri) ∩ Cd−1(xi, si), and since A ∩ E/= ∅, it follows that

dist(xi, E) ≤ ri,

dist(E, xi) ≤ si,
(6.4)

and that d(xi, xj) ≤ ri + sj whenever i, j ∈ I. Trivially, we have dist(xα, E) ≤ rα and
dist(E, xα) ≤ sα whenever α ∈ S.

Therefore, by external q-hyperconvexity of E, we conclude that

[
⋂

i∈I
(Cd(xi, ri) ∩ Cd−1(xi, si))

]

∩
[
⋂

α∈S
(Cd(xα, rα) ∩ Cd−1(xα, sα)) ∩ E

]

=
⋂

α∈S
(Cd(xα, rα) ∩ Cd−1(xα, sα)) ∩ (E ∩A)/= ∅.

(6.5)

Thus, the proof is complete.

We next show that the intersection of a descending family of externally q-hyperconvex
nonempty subspaces of a bounded q-hyperconvex T0-quasimetric space behaves as expected.
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Theorem 6.5 (compare [18, Theorem 4]). Let (X, d) be a bounded q-hyperconvex T0-quasimetric
space. Moreover, let (Xi)i∈I be a descending family of nonempty externally q-hyperconvex subsets of
X, where I is assumed to be totally ordered such that i1, i2 ∈ I and i1 ≤ i2 if and only if Xi2 ⊆ Xi1 .
Then

⋂
i∈I Xi is nonempty and externally q-hyperconvex relative to X.

Proof. Theorem 4.1 implies that D =
⋂

i∈I Xi /= ∅. In order to show that D is externally q-
hyperconvex, let a nonempty family (xα)α∈S of points in X and families of nonnegative real
numbers (rα)α∈S and (sα)α∈S be given such that d(xα, xβ) ≤ rα + sβ, and dist(xα,D) ≤ rα and
dist(D,xα) ≤ sα whenever α, β ∈ S.

Since X is q-hyperconvex, we know that A :=
⋂

α∈S(Cd(xα, rα) ∩ Cd−1(xα, sα))/= ∅. Also,
since for each α ∈ S, dist (xα,D) ≤ rα and dist (D,xα) ≤ sα, we have dist(xα,Xi) ≤ rα and
dist(Xi, xα) ≤ sα whenever i ∈ I, so that, by external q-hyperconvexity ofXi, we conclude that
A ∩Xi /= ∅whenever i ∈ I.

By Lemma 6.4, (A ∩ Xi)i∈I is a descending chain of nonempty (externally) q-hyper-
convex subsets of (X, d), so that again by Theorem 4.1

⋂
i∈I(A ∩Xi) = A ∩D/= ∅.

Let us note that the result stated in our abstract is a consequence of our next theorem.

Theorem 6.6 (compare [18, Theorem 1]). Let (H,d) be a q-hyperconvex T0-quasimetric space, let
X be any set, and let a map T ∗ : X → Eq(H) be given. Then, there exists a map T : X → H for
which T(x) ∈ T ∗(x) whenever x ∈ X and for which d(T(x), T(y)) ≤ dH(T ∗(x), T ∗(y)) whenever
x, y ∈ X.

Proof. Let F denote the collection of all pairs (D, T), where D ⊆ X, T : D → H,T(d) ∈ T ∗(d)
whenever d ∈ D, and d(T(x), T(y)) ≤ dH(T ∗(x), T ∗(y)) whenever x, y ∈ D. Note that F/= ∅,
since ({x0}, T) ∈ F for any choice of x0 ∈ X and T(x0) ∈ T ∗(x0). Define a partial order relation
on F by setting (D1, T1) � (D2, T2) if and only if D1 ⊆ D2, and, T2|D1 = T1.

Let ((Dα, Tα))α∈S be an increasing chain in (F,�). Then it follows that (
⋃

α∈S Dα, T) ∈ F
where T |Dα = Tα. By Zorn’s lemma, (F,�) has a maximal element, say (D, T). Assume that
D/=X and select x0 ∈ X \D. Set D̃ = D ∪ {x0} and consider the set

J =
⋂

x∈D
[Cd(T(x), dH(T ∗(x), T ∗(x0))) ∩ Cd−1(T(x), dH(T ∗(x0), T ∗(x)))] ∩ T ∗(x0). (6.6)

Since T ∗(x0) ∈ Eq(H), by definition of external q-hyperconvexity, J /= ∅ if for each x ∈ D, we
have dist(T(x), T ∗(x0)) ≤ dH(T ∗(x), T ∗(x0)) and

dist(T ∗(x0), T(x)) ≤ dH(T ∗(x0), T ∗(x)), (6.7)

and for any x, y ∈ D, also

d
(
T(x), T

(
y
)) ≤ dH(T ∗(x), T ∗(x0)) + dH

(
T ∗(x0), T ∗(y

))
. (6.8)

We are going to check that these conditions hold.
Let x ∈ D. For each ε > 0, we have T ∗(x) ⊆ Bd−1(T ∗(x0), dH(T ∗(x), T ∗(x0)) + ε) and

T ∗(x) ⊆ Bd(T ∗(x0), dH(T ∗(x0), T ∗(x)) + ε) by definition of the Hausdorff quasipseudometric.
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Since T(x) ∈ T ∗(x), for each ε > 0, there is a ∈ T ∗(x0) such that d(T(x), a) ≤
dH(T ∗(x), T ∗(x0)) + ε, and there is b ∈ T ∗(x0) such that

d(b, T(x)) ≤ dH(T ∗(x0), T ∗(x)) + ε. (6.9)

Therefore, dist(T(x), T ∗(x0)) ≤ dH(T ∗(x), T ∗(x0)) and dist(T ∗(x0), T(x)) ≤ dH(T ∗(x0), T ∗(x)).
We finally also note that by assumption on T , for each x, y ∈ D we have that

d
(
T(x), T

(
y
)) ≤ dH

(
T ∗(x), T ∗(y

)) ≤ dH(T ∗(x), T ∗(x0)) + dH

(
T ∗(x0), T ∗(y

))
. (6.10)

Thus, we have shown that J /= ∅. Choose y0 ∈ J and define
T̃(x) = y0 if x = x0 and T̃(x) = T(x) if x ∈ D.
Since for each x ∈ D, d(T̃(x0), T̃(x)) = d(y0, T(x)) ≤ dH(T ∗(x0), T ∗(x)) and

d(T̃(x), T̃(x0)) = d(T(x), y0) ≤ dH(T ∗(x), T ∗(x0)), we conclude that (D ∪ {x0}, T̃) ∈ F,
contradicting the maximality of (D, T). Therefore, D = X.

Corollary 6.7 (compare [18, Corollary 1]). Let (H,d) be a q-hyperconvex T0-quasimetric space.
Moreover, let (X, ρ) be a T0-quasimetric space, and suppose that T ∗ : X → Eq(H) is nonexpansive,
that is, dH(T ∗(x), T ∗(y)) ≤ ρ(x, y) whenever x, y ∈ X. Then, there is a nonexpansive map T :
(X, ρ) → (H,d) for which T(x) ∈ T ∗(x) whenever x ∈ X.

Proof. Because T ∗ is nonexpansive, the selection obtained from Theorem 6.6 is also non-
expansive.

Corollary 6.8 (compare [18, Corollary 2]). LetH be a bounded and q-hyperconvex T0-quasimetric
space and suppose that T ∗ : H → Eq(H) is nonexpansive. Then T ∗ has a fixed point, that is, there
exists x ∈ H such that x ∈ T ∗(x).

Proof. The existence of a fixed point for the nonexpansive selection T of T ∗, which exists by
Corollary 6.7, follows from Theorem 3.3.

In the following theorem, we set Fix(T ∗) = {x ∈ H : x ∈ T ∗(x)}. According to
Corollary 6.8, Fix(T ∗)/= ∅ if H is bounded and q-hyperconvex, and T ∗ is nonexpansive.

Theorem 6.9 (compare [18, Theorem 2]). Let (H,d) be a q-hyperconvex T0-quasimetric space,
let T ∗ : H → Eq(H) be a nonexpansive map and suppose that Fix(T ∗)/= ∅. Then, there exists a
nonexpansive map T : H → H with T(x) ∈ T ∗(x) whenever x ∈ H and for which Fix(T) =
Fix(T ∗).

Proof. Let F denote the collection of all pairs (D, T), where Fix(T ∗) ⊆ D ⊆ H,T : D →
H,T(d) ∈ T ∗(d) whenever d ∈ D, T(x) = x whenever x ∈ Fix(T ∗), and d(T(x), T(y)) ≤
d(x, y) whenever x, y ∈ D. By assumption (Fix(T ∗), Id) ∈ F, so F /= ∅. The argument now
follows from a modification of the proof of Theorem 6.6. One defines a partial order on F by
setting (D1, T1) � (D2, T2) if and only if D1 ⊆ D2 and T2|D1 = T1.
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Let ((Dα, Tα))α∈S be an increasing chain in (F,�). Then, it follows that (
⋃

α∈S Dα, T) ∈ F
where T |Dα = Tα whenever α ∈ S. By Zorn’s lemma, (F,�) has a maximal element, say (D, T).
Assume D/=H and find x0 ∈ H \D. Set D̃ = D ∪ {x0} and consider the set:

J =
⋂

x∈D
[Cd(T(x), d(x, x0)) ∩ Cd−1(T(x), d(x0, x))] ∩ T ∗(x0). (6.11)

Since T ∗(x0) ∈ Eq(H), by definition of external q-hyperconvexity, J /= ∅ if for each x ∈ D, we
have dist(T(x), T ∗(x0)) ≤ d(x, x0) and dist(T ∗(x0), T(x)) ≤ d(x0, x), and for any x, y ∈ D we
have d(T(x), T(y)) ≤ d(x, x0) + d(x0, y).

We are going to check these conditions next. Let x ∈ D. For each ε > 0, we
have T ∗(x) ⊆ Bd−1(T ∗(x0), dH(T ∗(x), T ∗(x0)) + ε) ⊆ Bd−1(T ∗(x0), d(x, x0) + ε) and T ∗(x) ⊆
Bd(T ∗(x0), dH(T ∗(x0), T ∗(x)) + ε) ⊆ Bd(T ∗(x0), d(x0, x) + ε) by definition of the Hausdorff
quasipseudometric.

Since T(x) ∈ T ∗(x), for each ε > 0, there is a ∈ T ∗(x0) such that d(T(x), a) ≤ d(x, x0)+ε,
and there is b ∈ T ∗(x0) such that d(b, T(x)) ≤ d(x0, x) + ε. Therefore, dist(T(x), T ∗(x0)) ≤
d(x, x0) and dist(T ∗(x0), T(x)) ≤ d(x0, x).

We finally also note that by assumption on T for each x, y ∈ D we have that
d(T(x), T(y)) ≤ d(x, y) ≤ d(x, x0) + d(x0, y).

Thus, we have shown that J /= ∅. Choose y0 ∈ J and define T̃(x) = y0 if x = x0 and
T̃(x) = T(x) if x ∈ D.

Since for each x ∈ D,d(T̃(x0), T̃(x)) = d(y0, T(x)) ≤ d(x0, x) and

d
(
T̃(x), T̃(x0)

)
= d

(
T(x), y0

) ≤ d(x, x0), (6.12)

we conclude that (D ∪ {x0}, T̃) ∈ F, contradicting the maximality of (D, T). Therefore, D =
H.

We will next establish the q-hyperconvexity of the space of all bounded λ-Lipschitzian
self-maps on a q-hyperconvex T0-quasimetric space.

Theorem 6.10 (compare [18, Theorem 3]). Let (X, d) be a q-hyperconvex T0-quasimetric space
and for λ > 0 let Fλ denote the family of all bounded λ-Lipschitzian self-maps on (X, d) equipped
with the T0-quasimetric d̂(f, g) = supx∈Xd(f(x), g(x)) whenever f, g ∈ Fλ. Then (Fλ, d̂) is itself a
q-hyperconvex T0-quasimetric space.

Proof. We leave it to the reader to verify that d̂ is an extended T0-quasimetric on the set Fλ.
We next note that d̂ is a T0-quasimetric, since d̂ does not attain ∞. Indeed, let x0, x ∈ X and
f, g ∈ Fλ. Then,

d
(
f(x), g(x)

) ≤ ∣∣d
(
f(x), g(x)

) − d
(
f(x0), g(x0)

)∣∣ + d
(
f(x0), g(x0)

)

≤ ds(f(x0), f(x)
)
+ ds(g(x), g(x0)

)
+ d

(
f(x0), g(x0)

)

≤ Mf +Mg + d
(
f(x0), g(x0)

)
(6.13)
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for some positive real constants Mf and Mg , since f and g are bounded. We conclude that
d̂(f, g)/=∞.

Suppose that (fα)α∈S is a nonempty family of functions in Fλ and let

(rα)α∈S, (sα)α∈S, (6.14)

be families of nonnegative reals such that d̂(fα, fβ) ≤ rα + sβ whenever α, β ∈ S. Then,
for each x ∈ X, we have d(fα(x), fβ(x)) ≤ rα + sβ whenever α, β ∈ S. So because of the
q-hyperconvexity of (X, d), we have that

J(x) =
⋂

α∈S

(
Cd

(
fα(x), rα

) ∩ Cd−1
(
fα(x), sα

))
/= ∅. (6.15)

Note that, by Lemma 6.4 applied to E = X, we see that J(x) ∈ Eq(X) whenever x ∈ X.
We next show that dH(J(x), J(y)) ≤ λd(x, y) whenever x, y ∈ X. To this end, it

suffices to show that for each x, y ∈ X we have J(y) ⊆ Cd(J(x), λd(x, y)) (i.e., J(x) ⊆
Cd(J(y), λd(y, x)), and that J(x) ⊆ Cd−1(J(y), λd(x, y)).

Fix x, y ∈ X. If z ∈ J(x), then for each α ∈ S, by the λ-Lipschitzian condition satisfied
by fα,

d
(
z, fα

(
y
)) ≤ d

(
z, fα(x)

)
+ d

(
fα(x), fα

(
y
)) ≤ d

(
z, fα(x)

)
+ λd

(
x, y

) ≤ sα + λd
(
x, y

)
,

d
(
fα
(
y
)
, z
) ≤ d

(
fα
(
y
)
, fα(x)

)
+ d

(
fα(x), z

) ≤ λd
(
y, x

)
+ rα.

(6.16)

By Lemma 5.2 applied toNλd(x,y),λd(y,x)(J(y)), we then have

z ∈
⋂

α∈S

[
Cd

(
fα
(
y
)
, rα + λd

(
y, x

)) ∩ Cd−1
(
fα
(
y
)
, sα + λd

(
x, y

))]

= Nλd(x,y),λd(y,x)
(
J
(
y
))

=
⋃

a∈J(y)

[
Cd

(
a, λd

(
y, x

)) ∩ Cd−1
(
a, λd

(
x, y

))]
.

(6.17)

Therefore, J(x) ⊆ Cd−1(J(y), λd(x, y)), and J(x) ⊆ Cd(J(y), λd(y, x)) and thus J(y) ⊆
Cd(J(x), λd(x, y))whenever x, y ∈ X. Hence, our claim is verified.

In the light of Theorem 6.6 for each x ∈ X, it is possible to find f(x) ∈ J(x) so that we
get f ∈ Fλ, since d(f(x), f(y)) ≤ dH(J(x), J(y)) ≤ λd(x, y) whenever x, y ∈ X. In particular,
we also note that f is bounded. Indeed, fix α ∈ S. Then, for any x, y ∈ X and some positive
real constantMfα , we have d(f(x), f(y)) ≤ d(f(x), fα(x))+d(fα(x), fα(y))+d(fα(y), f(y)) ≤
sα +Mfα + rα by the choice of f . Thus, f is indeed bounded.

Since f ∈ ⋂
α∈S(Cd̂(fα, rα)∩Cd̂−1(fα, sα)), we have shown that (Fλ, d̂) is q-hyperconvex.

We conclude this article with a curious observation in the spirit of [18, Proposition 2].
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Proposition 6.11. Suppose that (X, d) is a bounded q-hyperconvex T0-quasimetric space and letU =⋂
i∈I(Cd(xi, ri) ∩ Cd−1(xi, si)) and V =

⋂
i∈I(Cd(yi, ri) ∩ Cd−1(yi, si)) with two nonempty families

(xi)i∈I ,(yi)i∈I of points in X and two families (ri)i∈I , (si)i∈I of nonnegative reals. Then, dH(V,U) ≤
sup{d(yi, xi) : i ∈ I}.

Proof. Let ρUV = sup{d(xi, yi) : i ∈ I} and similarly, let ρVU = sup{d(yi, xi) : i ∈ I}, and
let x ∈ U. Then, for each i ∈ I, d(x, yi) ≤ d(x, xi) + d(xi, yi) ≤ si + ρUV and d(yi, x) ≤
d(yi, xi) + d(xi, x) ≤ ρVU + ri. Consequently, x ∈ ⋂

i∈I(Cd(yi, ri + ρVU) ∩ Cd−1(yi, si + ρUV )) =⋃
a∈V (Cd(a, ρVU) ∩ Cd−1(a, ρUV )) by Lemma 5.2.

Therefore, U ⊆ Cd(V, ρVU) and U ⊆ Cd−1(V, ρUV ), and similarly, by interchanging U
and V , hence, V ⊆ Cd−1(U, ρVU). We have shown that dH(V,U) ≤ ρVU.
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