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Abstract: We assess the validity of the surface moisture availability parameter (Mo) derived from
satellite-based optical/thermal measurements using the simplified triangle method. First, we show
that Mo values obtained from the simplified triangle method agree closely with those generated
from a soil/vegetation/atmosphere/transfer (SVAT) model for scenes over a field site at the Allahabad
district, India. Next, we compared Mo values from the simplified triangle method for these same
overpass scenes with surface soil water content measured at depths of 5 and 15 cm at this field site.
Although a very weak correlation exists between remotely sensed values of Mo for the full scenes and
measured soil water content measured at both depths, correlations increasingly improve for the 5 cm
samples (but not for the 15 cm samples) as pixels were limited to increasingly smaller vegetation
fractions. We conclude that the simplified triangle method would yield reasonable values of Mo

and demonstrate good agreement with ground measurements, provided that validation is limited to
pixels with little or no vegetation and to soil depths of 5 cm or less.

Keywords: simplified triangle method; soil water content; satellite-based optical/thermal
measurement; limitation; validating

1. Introduction

Surface soil moisture is a regulator that controls the share of rainfall that percolates, runs off,
or evaporates from the land surface. Surface soil moisture plays a vital role in apportioning the
incoming solar radiation into latent and sensible heat fluxes [1]. Soil moisture is indispensable for the
soil–plant growth relationship [2]. In this paper, the remotely sensed surface soil moisture availability
(Mo) is equated to the fraction of “extractable” soil water content, essentially the ratio of soil water
content (SWC) to that of field capacity. Soil moisture varies greatly in time, depth and space. The key
soil properties that influence the amount of moisture present in the soil include: soil texture, soil organic
matter and soil structure [3,4]. Moreover, the amount of precipitation and the rate of evapotranspiration
(ET) play a significant role in drying out of soil, hence soil moisture can be deduced from ET [5].

Initially, geologists applied the technique using remote sensing with optical/thermal measurements
to locate mineral deposits while the meteorologists applied the technique so as to estimate surface
turbulent energy fluxes and soil moisture availability and the evapotranspiration fraction (EF, defined
as the ratio of ET to Rn, the net radiation) [6]. The essential idea behind the use of optical and thermal
infrared measurements of surface radiant temperature (Tir) in estimating surface soil moisture is that
surface radiant temperature is very sensitive to surface soil moisture, but also to fractional vegetation
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cover (Fr) [6]. Similarly, retrieval of soil moisture and vegetation parameters from remotely sensed
data has been very promising using microwave remote sensing techniques [7]. Other techniques for
inferring soil moisture include: gamma radiation, hyperspectral, thermal and reflected solar radiation,
proximal remote techniques such as cosmic-ray neutron and proximal gamma ray techniques [8–11].

Adequate, continuous and reliable information about soil moisture over large areas is limited in
many parts of the world despite its multifaceted importance. This is because the conventional point
measurements are complex and expensive [12]. Scott et al. [13] opined that there is a need for rapid,
less expensive and reliable methods for soil moisture determination since the field-based techniques
are cumbersome and expensive and have only limited spatial and temporal coverage. Moreover, many
regions lack even the basic meteorological and surface information required for execution of land
surface moisture retrieval models based on remote measurements.

Recently, more simplified models have been developed that employ a triangular or trapezoidal
geometry of the pixels in Tir/Fr space, where Tir is the radiant surface temperature and Fr is the
fractional vegetation cover. These types of models constrain the solution for Mo and EF, having
the advantage of requiring no ancillary surface or atmospheric information other than the pixel
measurements, while also involving only a simple algebraic framework [14–16].

A question remains as to the accuracy of these simpler models, the simplified triangle method
having yet to be fully validated. In order to establish their utility, it is essential that these simpler
models be tested against real measurements and against those obtained from more complex models.
An object of this paper therefore is to first show that the derived soil surface moisture availability (Mo)
obtained from the simplified triangle method agrees closely with that same parameter generated from
a soil/vegetation/atmosphere/transfer (SVAT) model described by [6,17]. Next, we compare Mo from
the simplified triangle method with direct ground measurements of soil water content (SWC) made
over the field sites at the Allahabad district, India.

2. Materials and Methods

2.1. Geographical Description of the Study Site

Allahabad is one of the districts of the Uttar Pradesh state of India. The district is at an elevation
of 98 m. It stands at the confluence of the sacred Ganga, Yamuna and the Invisible Saraswati rivers.
Latitudinal and longitudinal positions of Allahabad are 25.45◦N and 81.84◦E respectively [18].

Allahabad is characterized with an annual rainfall of about 1027mm. In the summer, surface
temperatures are in the range 40–45 ◦C while in the winter they range from 2 to 24 ◦C. This is a typical
characteristic of humid subtropical climate according to Köppen [18].

Alluvial soils predominate most of the Allahabad as a result of fluvial actions of river networks
in the Ganges system [19]. Moderately shallow and eroded loamy soils are found in the Chaka
block (sub-study area) [18,20,21]. Scrub (vegetation dominated by shrubs) is commonly found in the
area. Common trees found in the area include: Dhak (Butea monosprma), Kakor, (Ziziphus globerrima),
Aonla (Emblica ofbicinalis), Bahera (Terminalia belerica), Babul etc. Urban landscape is beautified by
artificial vegetation.

The Tehsils (administrative areas) under study are depicted in Figure 1. In situ soil moisture
measurements were done in the Chaka block (sub-study area). Some of the plots where sampling took
place were under irrigation.
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Figure 1. Study site and in situ measurement points (main frame: satellite image with sampling points, 
upper inset: Uttar Pradesh State showing Allahabad and lower inset shows Allahabad district with 
its blocks). 

2.2. Satellite Image Processing Operations 

The pre-processing and processing operations were carried out within the ERDAS IMAGINE 
9.2 environment. Radiometric calibration coefficients of Landsat 7 ETM Plus were used for converting 
raw digital numbers to radiance according to the Landsat 7 Science Data User’s Handbook [22,23] 
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where: ρ = unitless planetary reflectance,  𝜋 = pi [~3.14159],  

Figure 1. Study site and in situ measurement points (main frame: satellite image with sampling points,
upper inset: Uttar Pradesh State showing Allahabad and lower inset shows Allahabad district with
its blocks).

2.2. Satellite Image Processing Operations

The pre-processing and processing operations were carried out within the ERDAS IMAGINE
9.2 environment. Radiometric calibration coefficients of Landsat 7 ETM Plus were used for converting raw
digital numbers to radiance according to the Landsat 7 Science Data User’s Handbook [22,23] procedures:

Lλ =
(

LMAXλ − LMINλ
QCalmax −Qcalmin

)
(Qcal −Qcalmin) + LMINλ (1)

where:
Lλ = spectral radiance [W/ (m2 sr µm)]; Qcal = quantized calibrated pixel value in DN; QCalmax

= maximum quantized calibrated pixel value (corresponding to LMAXλ) in digital numbers (DN);
Qcalmin= minimum quantized calibrated pixel value (corresponding to LMINλ) in DN; LMAXλ=

spectral at-sensor radiance that is scaled to QCalmax [W/(m2 sr µm)] in DN; LMINλ= spectral at-sensor
radiance that is scaled to Qcalmin [W/(m2 sr µm)].

Spectral radiance at the sensor’s aperture was converted to planetary top of atmosphere (TOA)
reflectance using Equation (2) [22,23]:

ρλ =
π. Lλ.d2

ESUNλ. cosθs
, (2)

where:
ρλ= unitless planetary reflectance,
π = pi [~3.14159],
Lλ = spectral radiance at sensor’s aperture [W/(m2 sr µm)],
d2 = earth–sun distance in astronomical units [AU],
ESUNλ = mean exo-atmospheric solar irradiance [W/(m2µm)], and
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θs = solar zenith angle in degrees.

2.3. NDVI and Fr Derivation

NDVI, the normalized difference vegetation index, was calculated using red and near infrared
(NIR) spectral bands. The formula (Equation (3)) is as follows:

NDVI =
ρnir − ρred

ρnir + ρred
, (3)

where: ρnir is near-infrared band reflectance; ρred is red band reflectance.
NDVI was scaled for the computation of fractional vegetation cover using Equation (4):

N∗ =
NDVI−NDVI0

NDVIs −NDVI0
(4)

and Fr was derived from Equation (5).
N∗ is scaled NDVI (ranges from 0 to 1); NDVI0 and NDVIs are respectively, the minimum and

maximum values found in the image once cloud and standing water are removed. The former
represents bare soil and the latter represents full vegetation [6,24]. These essential variables can be
obtained automatically by computing NDVI layer statistics in the ERDAS IMAGINE 9.2 platform or
by simply moving the cursor around the image. In so doing, standing water and cloud pixels are
removed. Fractional vegetation cover is then computed from N*:

Fr = N∗2, (5)

where Fr is fractional vegetation cover which ranges from 0 to 1. Fr = 1 means a pixel is filled fully
with vegetation while Fr = 0 means a pixel is devoid of vegetation, i.e., it contains just bare soil.

2.4. Surface Radiant Temperature Derivation

Surface radiant temperature was derived from the thermal band of the enhanced thematic mapper
plus sensor onboard the Landsat 7 platform. The spectral radiance was converted to top of the
atmosphere brightness temperature assuming spectral emissivity equal to 1.

T =
K2

ln
(

K1
Lλ

+ 1
) (6)

where: T = top of the atmosphere brightness temperature in kelvin; K1 = first thermal conversion
constant (666.09W/(m2 sr µm)), K2 = second thermal conversion constant (1282.7K); Lλ is spectral
radiance [W/ (m2 sr µm)] and ln is natural logarithm [22,23,25].

2.5. Scaled Surface Radiant Temperature Derivation

For the transformation of pixel measurements to surface soil moisture, the surface radiant
temperature was used to calculate a scaled temperature using Equation (7) [6].

T∗ =
{

(Tir − Tmin)

(Tmax − Tmin)

}
(7)

where T* = scaled surface radiant temperature; Tir, Tmin and Tmax are surface radiant temperature,
minimum and maximum temperature in the image respectively. Tmin represents a pixel with lowest
temperature value and maximum NDVI value (full vegetation, Fr=1) while Tmax represents a pixel
with highest temperature value and minimum NDVI value (dry bare soil) in the image. These variables
are obtained by judicious hand and eye examination of the images, whereby one locates areas of
dense vegetation and dry bare surfaces, such as paving. In so doing, T* ranges from 0 to 1, where T*
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= 0 corresponds to the temperature of a wet and fully vegetated pixel and T*=1 corresponds to the
temperature of a dry pixel devoid of vegetation.

2.6. T*- Fr Triangular Space

T* and Fr values were plotted on the X, Y plane, Fr on the y-axis and T* on the x-axis.
This arrangement produced triangular shapes on each day under study, as can be seen in Figure 2.
These figures clearly show the triangular shape of the pixel envelope in Fr/T* space. Initially, cloud and
water pixels distort the shape of T*/Fr triangular space but the bulges were systematically removed.
The sharp, slanting right-hand edge of the envelope, referred to as the warm edge, represents the limit
of soil dryness for a given value of Fr. The left-hand edge, the cold edge, is typically a vertical line
drawn at a constant T* = 0 from Fr = 0 to Fr = 1. After visual inspection of the warm edge, an algorithm
(Equation (8)) was also used to fit the warm edge following a procedure described by [12]:

T ∗warm edge = a + bFri, (8)

where a and b are the intercept and slope of the linear warm edge respectively. In practice, however,
fitting a line to the warm edge requires a combination of analytical and trial and error approaches
(using one’s eye or intelligent manual fit). It should be noted, however, that for a right triangle, such as
shown in Figure 2, a warm edge that extends from the vertices T* = 1.0, Fr = 0 to T* = 0, Fr = 1 will
have the form T* = 1 − Fr along the warm edge.

2.7. Soil Surface Moisture Availability Estimation (Mo)

T*, Fr and coefficients generated from a SVAT model fit to a third-order polynomial equation were
used as inputs of Equation (9) for transformation of pixel values to surface moisture availability for a
generic case [6]:

(Mo ) =
3∑

i=0

3∑
j=0

ai jT∗iFr j (9)

where Mo is the moisture availability and aij are coefficients of the polynomial equation from the SVAT
model. The coefficients used to transform the pixel measurements to moisture availability were also
adopted from [6]. This equation fits the output of a full SVAT model (Mo, EF) for a generic case to a
range of input values of Fr and T* [6].

The simplified geometric algorithm based on the triangle shape, developed by [16,26], allows one
to calculate Mo from Equation (10). Thus,

Mo = 1 - T*(pixel)/T*(warm edge), (10)

where, as stated above, T∗
(warm edge) = (1− Fr); Mo≤ 1.0; ≥ 0.

2.8. Satellite Images

Landsat 7 ETM Plus data were utilized. Five cloud free scenes (Path 142; Row 42) were downloaded
from the USGS Landsat data repository. Image acquisition dates were 30 January2015; 15 February
2015; 19 March 2015; 20 April 2015 and 06 May 2015.

2.9. Ground Reference Measurements

In situ measurements of soil moisture were made in the Chaka block. The gravimetric method
was used to determine the soil moisture. A total of 22 ground sampling points were used. Soil moisture
measurements were collected at 0–5 cm and 0–15 cm depths during the Landsat 7 ETM plus overpass
times (around 05:00 Coordinated Universal Time (UTC) which is equivalent to between 10:30 and
11:30 a.m., Indian Standard Time (IST).
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3. Results and Discussions

3.1. T*/ Fr Spaces

Mo values obtained from the simplified triangle method, plotted in T*/ Fr space (Figure 2)
clearly show a well-defined triangular shape. The estimated soil surface moisture obtained from the
third-order polynomial algorithm (Equation (9)) also exhibits the characteristic shape of a triangle.
A triangular pattern results from the fact that as Fr increases the T* decreases, a consequence of the
fact that vegetation obscures the highly variable surface dryness (temperature) beneath it while itself
maintaining a fairly constant temperature close to that of the air.
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These figures (Figure 2) agree with the interpretation of T*/Fr space by various authors [6,27–32]
showing the salient features of the triangle: the warm and cold edges and the triangular relationship
between soil water content and fractional vegetation cover.

The sloping right edge of the distribution, the so-called “warm edge”, constitutes the limit of
dryness of the soil for a given value of Fr. Pixels tend to show a rather sharp edge, thereby allowing
one to easily delineate this feature, which corresponds therefore to a value of Mo = 0. Note that this
edge does not imply a drying out of the vegetation itself, so that the evapotranspiration fraction EF is
not necessarily equal to zero except at the lower right-hand vertex where Fr = 0 and T* = 1.0.

The left edge of the triangle is called the “cold edge”. Pixels with cool surface temperature tend to
cluster around the edge, which is not as well defined as the warm edge, but nevertheless defines a
limit of soil wetness, Mo = 1.0. This feature tends to extend vertically from the bare soil line, Fr = 0.
By definition EF along this edge is also equal to 1.0 and both EF and Mo are assumed to vary linearly
across the domain.

Since the domain of the triangle always varies from 0 to 1.0, successive triangles constructed at
different times would all be superposed and congruent. This concept of superposition of triangles
constitutes the ‘’universal” triangle which allows one to monitor the changes in surface moisture
condition of a pixel over several successive days. By locating where a pixel falls in the triangle in
a particular day and finding its position in successive days, a trajectory in time is formed which
graphically depicts the drying or wetting process.

3.2. Spatial and Temporal Variability of Moisture Availability

Pixel measurements (Fr and T*) within each triangle were transformed to moisture availability
using the aforementioned algorithms (Equations (9) and (10)). The dimension of each pixel is 30 × 30 m.
Moisture availability of the individual pixels then was converted to picture elements, showing the
spatial distribution of Mo (Figures 3 and 4). These figures demonstrate the great spatial variability of
moisture availability over the study area (Chaka block), while adhering to the triangular configuration.

On the whole, soil surface moisture availability decreases gradually from DOY 46 to DOY
110 owing to the absence of rainfall between the period (Figure 3).

Correspondingly, the simulated soil surface moisture using the geometric model algorithm was
also mapped (Figure 4). The distribution also varies in both time and space. The range of soil moisture
availability also decreases gradually from DOY 46 to DOY 110 due to the aforementioned dryness.
This showed that the results from the two algorithms are consistent.
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Figure 4. Spatial variability of estimated soil surface moisture availability Mo obtained from the
simplified triangle method algorithm in the Chaka block.

3.3. Soil Water Content Measurements

Soil moisture measurements over 5 and 15 cm depths were obtained using the gravimetric
method in the Chaka block for five days on 30 January, 15 February, 19 March, 20 April and 6 May,
in 2015. Bulk density of the soil samples was computed to convert gravimetric water content (GWC) to
volumetric water content (VWC). These were plotted versus values of Mo produced from the simplified
triangle method for three days that had the most reliable measurements: 30 January, 19 March and
20 April in 2015. Implied in Figure 8 for the 5 cm data, the range of Mo from zero to 1.0 corresponds to
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soil water content values ranging from 0.04 to just over 0.3 (values calculated by letting x = 0 (Mo = 0)
and x =1(Mo = 1)).

4. Validation

4.1. Comparison of Mo between the SVAT Model and the Simplified Triangle Method (Geomtric Model Algorithm)

The estimated soil surface moisture obtained from the third-order polynomial algorithm and simplified
geometric model algorithm were correlated. Figure 5 depicts the Mo values obtained from the two algorithms
which correspond to data points where in situ measurements were done. It is apparent from Figure 5 that
strong positive correlation was found to exist between the simulated soil surface moisture using the two
algorithms. On all the dates, R2 is greater than 0.6 and mostly greater than 0.8. Moreover, the data sets for
all days were combined in order to reinvigorate this finding (Figure 6). It was found that the agreement
between the two algorithms was promising (R2 0.7). This result adds to the validation of the use of the
recently introduced simplified geometric method by [26].
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Figure 6. Correlation between estimated soil surface moisture availability Mo, obtained from a
third-order fit to the output of the soil/vegetation/atmosphere/transfer (SVAT) model and geometric
model algorithm (combined data for all days).

4.2. Comparison of Mo with surface SWC measurements: the limits of validation

Initially these three days (30 January, 19 March and 20 April 2015) showed a small correlation
between Mo and the measured soil water content SWC. Capehart and Carlson [3] claim that one
reason for the poor correlation between these two variables is the fact that the satellite derived values,
in responding to surface radiometric temperature, would correlate best with direct measurements over
the top 1 cm of the soil. Consequently, one would not necessarily expect a perfect correlation between
the remotely derived Mo and the 0–5 cm soil water content measurements.

It is possible, nevertheless, to demonstrate better agreement between Mo values from the simplified
triangle method and the SWC measurements. Besides the mismatch between the surface soil water
content represented by Mo and the measured SWC, another source of this poor correlation can be seen
graphically on inspection of the triangles. As [16,17] have shown, isopleths of Mo extend from the
base of the triangle to its top vertex (Figure 7, modified from [16]), where they merge, thus rendering
the values of Mo near the upper vertex indeterminate. Errors in measurement must therefore become
increasingly important in going from the base of the triangles to the vertex, at some point completely
obscuring the real values of Mo.

The rectangles labeled A and B in Figure 7 are referred to here as “error spaces”. Irrespective on
any model, inherent errors exist in measuring Fr and T*, such as sensor noise, terrain slope, the presence
of sub-grid standing water, and clouds, etc. The vertical legs of the two identical rectangles, A and B,
shown in this figure (Figure 7), represent this kind of error in measuring Fr, while the horizontal legs
of the rectangle correspond to errors in measuring T*. Whatever sizes the reader may wish to assign
the sides of these rectangles, it is clear that the error increases as one approaches the upper vertex,
at some point implying that the results are completely obscured. (Note, however, that the implied
error in evapotranspiration fraction EF hardly changes between rectangles A and B).
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Figure 7. Fr versus T* triangle. Isopleths slanting upward toward the left are those of Mo and those
sloping upward toward the right are isopleths of evapotranspiration fraction (EF), defined as the ratio
of evapotranspiration divided by the net radiation. Identical rectangles A and B represent error spaces,
defined in the text; (adapted from [16]).

To show the effect of the error space, we plotted values of Mo obtained from the geometric model
algorithm versus SWC only for pixels whose values of Fr were below a certain threshold, while omitting
higher vegetation amounts above that threshold. Five values of the threshold were chosen: 0.3, 0.4, 0.5,
0.6 and 0.7 (Table 1).

Table 1. R squared and root mean square error values for threshold tests of Mo obtained from the
geometric model algorithm versus measured SWC.

Threshold No. of Points
R Squared RMSE

5 cm 15 cm 5 cm 15 cm

Threshold 0.3 10 0.434 0.349 0.191 0.189
Threshold 0.4 15 0.494 0.102 0.256 0.449
Threshold 0.5 26 0.338 0.325 0.231 0.229
Threshold 0.6 58 0.206 0.229 0.284 0.289
Threshold 0.7 38 0.123 0.150 0.283 0.285

Without threshold 58 0.192 0.142 0.285 0.294

A threshold of 0 therefore pertains to only bare soil pixels, while a threshold of 1.0 pertains to the
entire image. Table 1 shows that the values of R2 and the RMS error generally improve as the threshold
is decreased and less vegetation is included in the sample.

Figure 8 shows the graph of Mo versus SWC for the 0.3 threshold. Values of R2 in Figure 8 would
be much higher for the 5 cm measurements were it not for these two outliers for 5 cm measurements
near the lower axis. The values of R2 were appreciably higher for thresholds below 0.3, but these
graphs are not included because they are based on too few pixels.
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This relationship from Table 1, plotted in Figure 9, has an R2 of about 0.62 and suggests by 
extrapolation an R2 value for completely bare soil of about 0.74 (value calculated by letting y = 0 in 
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Figure 8. Correlation between soil water content and Mo produced from the geometric model algorithm
for a threshold of 0.3 (pixels with values of Fr greater than 0.3 were discarded); the left side corresponds
to the 0–5 cm depth SWC measurements and the right side is for the 0–15 cm depth measurements.

This relationship from Table 1, plotted in Figure 9, has an R2 of about 0.62 and suggests by
extrapolation an R2 value for completely bare soil of about 0.74 (value calculated by letting y = 0 in
the regression equation). Similarly, by extrapolation, the R2 would be close to zero for the entire field
corresponding to a threshold of 1.0. While these deductions are only speculative, they do support the
implication of the error spaces shown in Figure 7. Conversely, however, no such relationship is found
in the 15 cm measurements.
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5. Conclusions

Although various studies have described the triangle method, (and, more recently, the simplified
triangle method) and these show examples of the triangles formed in T*/Fr space, such as in Figure 2.,
this study provides two new results, including one very important implication for validating remotely
determined soil water content, using optical and thermal measurements. These are:
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Lack of a high correlation between Mo and soil water content (SWC) found in this and other
studies (e.g., [3]) can also be due to the deleterious effects of vegetation as well as the mismatch between
SWC measurements made over a 5 cm depth and those obtained remotely using optical and thermal
measurements. Correlations systematically improved when limited to smaller and smaller values of
fractional vegetation cover. We therefore suggest that validation studies that attempt to assess the
fidelity of remotely measured surface soil water content using optical and thermal measurements
compared with in situ surface measurements should confine the comparisons to pixels that have little
or no vegetation cover. Moreover, we strongly recommend that surface measurements be made over
layers with depths as shallow as possible, preferably 5 cm or less.

Close agreement occurred in comparing values of Mo obtained from the simplified triangle
method with those from a soil/vegetation/atmosphere/transfer (SVAT) model, thereby lending credence
to the simplified triangle method.

In conclusion, the simplified triangle method shows markedly improved agreement between
measured SWC and those obtained from this method of optical and thermal remote sensing, when
limited to nearly bare soil pixels.
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