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A B S T R A C T   

Metamorphic rocks are diverse with more compositions, structures, and textures that are complex. Rock type 
identification and prediction from metamorphic rocks using well log data are difficult tasks. This study shows the 
use of cross plot technique, Pearson correlation, and factor analysis in metamorphic rocks interpretation using 
borehole geochemical data from the 4390–5089 m interval depth of the Chinese Continental Scientific Drilling 
Main hole. Lithological identification abilities, correlation between geochemical and geophysical logs, and build 
a factor model which link in situ chemical element to minerals were studied. The results show that Potassium and 
Thorium logs are the most discriminating logs in metamorphic rocks. Pearson correlation shows that Potassium 
and Thorium are the largest contributors to the gamma ray responses. Factor analysis results show a 2 factor 
model-where factor 1 (amphibole mineral) and factor 2 (K-feldspar mineral) described 76.261% of the variation 
in log responses. These statistical methods can be a very helpful tool in helping the task of geoscientists in the 
context of research drillings.   

Introduction 

One of the oldest and most utilized methods that depend on the 
physical (as well as chemical) properties of rocks is subsurface well log
ging. Subsurface well logging provides continuous records on the 
composition and structural features of the penetrated rock. This allows the 
estimation of lithology and rock properties. As compared to sedimentary 
rocks, metamorphic rocks are more diverse with more compositions, 
structures, and textures that are complex. For instance, sedimentary rocks 
are generally sub-horizontally stratified, dolomites, sandstones and 
limestones; the boundaries between these strata play as indicator horizons 
which are readily correlated between wells. However, metamorphic rocks 
take into consideration a varied range of types from volcanics to massive 
intrusive rocks of various chemical compositions. Due to their great age 
and often complicated geologic history, crystalline rocks can be very 
structurally complex and can be fractured (Monier-Williams et al., 2009). 
Rock type identification and prediction from metamorphic rocks using 
well log data are difficult tasks because of their complicated geological 
characteristics (Mattsson 2007; Maiti et al., 2007; Maiti and Tiwari 2009; 
Bosch et al., 2013; Luo and Pan 2010; Pan et al., 2010). Knowledge in the 
use of logging technique in metamorphic rocks has been greatly improved 

due to scientific research programs such as Forsmark Site(Sweden), KTB 
(Germany), KOLA (Russia), Cajon Pass (USA), Uveghuta Site(Hungary), 
Granitic Rock(Czech Republic), Chinese Continental Scientific Drilling 
(CCSD) (China). The latter is our concern in this study. The CCSD was a 
joint project by the Chinese government and the International Continental 
Drilling Program (ICDP). The major scientific goal of CCSD was to access 
the key composition, deep structure, and active processes of the Sulu UHP 
metamorphic belt that are not exposed, by means of drilling a hole into 
the continental crust (Xu et al., 2009). The CCSD-Main Hole (CCSD-MH) is 
located near Maobei Donghai County, at the Sulu UHP metamorphic belt 
of Eastern China (Fig. 1). This UHP metamorphic belt is the world’s 
largest and has attracted huge interests from scientist public (He et al., 
2008). The CCSD arrived at its target depth of 5158 m with a core re
covery rate of 85%(Yang et al., 2006). The 5158 m deep main borehole of 
the CCSD penetrated five main lithological units: paragrneiss, orthogneiss, 
amphibolite, eclogite, and ultramafic rocks (Luo and Pan 2010). The 
CCSD-MH in China is the deepest penetration (5158 m) drilled into 
metamorphic rocks, nevertheless it is shallower than the Germany KTB 
(9101 m) and Russia Kola (12,000 m) drilled holes respectively (Ji and 
Xu, 2009); and its crustal geology and lithology differ essentially from 
those sampled by KTB and Kola drilled holes (Ji and Xu, 2009). Fig. 2 

* Corresponding author. 
E-mail address: konate77@yahoo.fr (A.A. Konaté).  
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illustrated the litho-structural profile of CCSD-MH. More information 
about the litho-structural of CCSD-MH can be found in (Xu et al., 2009b)). 

CCSD-MH was logged immediately after drilling. Geophysical and 
geochemical logs were run by Shengli Petroleum Logging Company. 
Geophysical log data has been an important part of research on the UHP 
metamorphic rocks from CCSD-MH (Pan et al., 2005, 2006; Salim et al., 
2008; Luo and Pan 2010; Pan et al., 2010; Luo et al., 2011; Konaté et al. 
(2015a,b); Yang et al., 2016, 2017). These studies made an important 
progress in gaining knowledge on the physical properties of different 
rock type of CCSD-MH. However, effective scientific drilling exploration 
needs a more ample explanation of the drilled rocks. Consequently, it is 
vital to investigate of both geochemical and geophysical data to entirely 
appreciate the log response of CCSD-MH. So in this study, focus is made 
on geochemical logs analysis. 

Geochemical logging provides continuous in situ measurements of 
the most abundant rock forming and some trace elements (Tamaki et al., 
1992). The geochemical log data collected, therefore, offer an alterna
tive possibility for adequate accurate lithology description in both 
crystalline and sedimentary rocks (Anderson et al., 1988). More details 
on geochemical logging technique can be found in Hertzog et al. (1989). 

It is also important to note the geochemical log data are not widely 
studied from CCSD-MH. Pan et al. (2010b) and Konaté et al. (2017) 
investigated on geochemical responses in between 100 and 1000 m and 
100- 2010 m depth interval respectively to understand the geochemical 
properties of rocks. Even though these studies exist, so far the CCSD-MH 
geochemical data has not yet been totally studied. Therefore, it offers a 
unique opportunity to study metamorphic rocks log responses of the 
Sulu UHP metamorphic belt. 

The purpose of this study is to analyze the geochemical log responses 
from CCSD-MH (4390–5089 m). To do so, (1) we analyzed and discussed 
the abilities of lithological identification using cross plot; (2) we inves
tigated the correlation between geochemical –geophysical logs; and (3) 
we applied factor analysis to construct a model linking elemental con
centration logs to mineral abundances. 

The idea behind this study is to evaluate the capabilities of the 
existing methods in the context of metamorphic rocks especially in the 
case of the CCSD-MH data. The results show that geochemical data offer 
adequate evidence for accurate lithological description in metamorphic 
rocks, and they are an excellent complement to geophysical logging, and 
core analyses in the studies of the CCSD-MH data. Statistical methods can 

Fig. 1. Location of Chinese Continental Scientific Drilling (CCSD) main hole(after Yang 2009). WYF: Wuliang–Yantai Fault; JXF: Jiashan–Xionshui fault.  
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be a very helpful tool in helping the task of geoscientists in the context of 
research drillings. 

Geological setting of study area 

One of the most significant solid earth discoveries of the last three 
decades is the identification of a large UHP metamorphic belt, more than 

1000 km long, in the Sulu–Dabie region of central eastern China (Xu 
et al., 2009). This UHP metamorphic belt was first subducted into the 
mantle, and then quickly exhumed back up to the upper crust, producing 
the largest UHP metamorphic terrane in the world (Yang, 2009 and 
references therein). The rocks on the surface outcrops in Dabie–Sulu are 
largely gneisses, comprising monzonitic gneiss, biotite gneiss and biotite 
plagioclase gneiss. These gneisses were formed in the Proterozoic or 
older, and underwent UHP metamorphic in the Triassic period; therefore 
the gneisses exposed on the CCSD site often contain coesite (Yang, 2009 
and references therein). The CCSD-MH is located in the sigmoid-shaped 
Maobei eclogite/ultramafic complex in the northern Sulu UHP upper 
tectonic slice (Xu et al., 2009). Both coesite and diamond have been 
discovered in eclogite, and coesite has also been found in orthogneiss, 
paragneiss, quartzite and marble in the UHP metamorphic belt (Xu et al., 
1992, 2009 and references therein). The Sulu–Dabie UHP metamorphic 
belt located at the east part of the Tanlu fault, resulted from the conti
nental subduction and collision between the North China and the 
Yangtze cratons during the Triassic (Liu et al., 2010).Referring to Yang 
(2009), before the collision, the Dabie–Sulu terranes were located in the 
northern boundary of the Yangtze craton. Nevertheless, they were 
divided later by the Tanlu fault and the Sulu terrane was displaced in a 
north direction. Extensive dynamic activity continued after the Triassic 
collision between the North China and Yangtze cratons. Note that the 
exhumation of the UHP metamorphic and HP metamorphic rocks, the 
intracontinental subduction of the Yangtze craton beneath the Sulu and 
North China craton took place during the early Jurassic. This subduction 
caused in part of the continental crust subsiding into the upper mantle. 
Beginning the middle Jurassic, large-scale granitoid intrusions estab
lished nearby the Dabie–Sulu zones and other parts of eastern China, 
probably ensuing from lithospheric thinning and heat flow upwelling 
from the asthenosphere. The granitic intrusions were followed by rifting 
and eruption of basalts alone the Tanlu fault zone. The mountain root 
that existed in the Dabie–Sulu orogenic belt was almost eroded. 

The Sulu terrane comprises of a series of HP and UHP metamorphic 
slices divided by wide shear zones. According to (Xu et al., 2009b) there 
are four tectonometamorphic zones are with respect to increasing 
metamorphic grades (Fig. 3). 

The Zone I is characterized by low-temperature (LT) and HP zone 
where glaucophane and kyanite-bearing paragneisses, quartzites and 
marbles experienced blueschist facies metamorphism at 0.7–0.85 GPa and 
300–360 ◦C. The Zone II is called medium temperature (MT) and very 
high pressure (VHP) zone which occurred hydroxyl‑rich topaz in kyanite 
quartzites, suggesting the metamorphism at 1.5–2.5 GPa and 500–600 ◦C. 
The Zone III is mainly composed of coesite-bearing supracrustal gneisses, 
quartzites, mica schists and amphibolites. The Zone IV is characterized by 
granitic gneisses and has been intensely modified by Cretaceous migma
tization and granitic plutons. Eclogites and garnet peridotites appear as 
lenses, pods or layers ranging from tens of centimetres to a few kilometres 
in size within supracrustal and granitic gneisses in the zones III and IV. 
The highest metamorphism at 4–7 GPa and 760–970 ◦C was known in 
eclogites and garnet peridotites, inferring very low geothermal gradients 
in a cold subduction zone (Xu et al., 2009b). 

Data 

This study focuses on the 4390–5089 m depth interval of CCSD-MH, 
from which 5599 data points were obtained. In this interval, the main 
lithology is orthogneiss, paragneiss, and amphibolite. Fig. 4. displays the 
geochemical logs profile of the CCSD-MH (4390–5089 m). The analysis 
of log data to characterize the lithology requires an increased level of 
interpretive care and skill. A combined analysis of these logs through 

Fig. 2. Simplified litho-structural profile of CCSD-MH (after Xu et al. (2009)).  
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statistical approach may improve remarkable diagnostic strength for 
lithological understanding in the study area. As research on the CCSD 
project data continues, many new conclusions are expected. 

Methods 

Cross plot 

A graph of two log responses compared to another is called a cross- 
plot. Two well logs can be cross plotted with one another; at each 
point in coordinate system corresponding to a measured pair of values 
defined by the N values of its samples. Proximity of points in the cross 
plot indicates similar log response. In contrast, separation of points 
suggests different log response. In this way, the cross plot in the cross 
plot logs can be viewed as statistical electrofacies as introduced by Serra 
(1984). Cross plot technique has been, and continue to be, used exten
sively to identify lithology. Several studies undertaken in Pan et al. 
(2010); Luo and Pan (2010), Rafik and Kamel, 2016; Das and Chatterjee 

(2018), Gogoi and Chatterjee (2020) have shown that cross plot have the 
latent for extracting information from well log curves. Cross plot allows 
the well log interpreter to visualize the data more successfully than 
observing at each log individually. Despite its wide-scale usage, how
ever, it has some limitations. Cross plot is multitrack log display become 
time consuming when the number of logs to be analyzed simultaneously 
increases (Saggaf and Nebrija 2000). Additionally, this method may 
generate multiple interpretations because cross plot log interpretation 
depends on the skill of the log interpreter. More details about this 
method can be found in Fertl (1981). 

Pearson’s correlation coefficient 

The correlation coefficient was invented by Pearson (1896). A 
Pearson’s correlation coefficient is commonly applied in geoscience to 
calculate a relationship between two variables. There has been an effort 
to apply Pearson’s correlation coefficient on geophysical log data 
(Bartetzko et al., 2005; Rafik and Kamel, 2016; Konaté et al., 2017; 

Fig. 3. Geological map of Dabie-Sulu oregen in east central China (after (Xu et al., 2009b)).  
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Campos da Purificacao and Nery, 2017) Here, it is utilized to determine 
significant relationship between rock composition and conventional log 
readings. 

The correlation coefficient between two variables x and y is desig
nated rxy. It can be calculated as: 

rxy =
cov(x, y)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
var(x)

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅
var(y)

√

Where cov(x, y) is covariance of x and y; var(x) is the sample variance of 
x; var(y) is the sample variance of y. 

Pearson’s correlation coefficient can take on any value in between 
− 1 and 1. The correlation coefficient sign shows the direction of the 
relationship, whereas the correlation magnitude that is how close it is to 
− 1 or +1 point out the strength of the relationship. 

Factor analysis (FA) 

Factor Analysis (FA) (Thurstone, 1931) is a statistical approach that 
tries to detect underlying variables (factors) that explain the pattern of 
correlations within a set of observed variables. There has been wide
spread application of FA using well log data (Herron 1986; Bücker et al., 
2000; Gelfort 2006; Szabó et al. 2011; Rafik and Kamel 2016). FA is 
frequently utilized in data reduction to detect a fewer number of factors 
that explain most of the variance observed in a much larger number of 
manifest variables. In this research it is supposed that the factors 
extracted by FA may be connected to the minerals that make up the rock 
in CCSD-MH (4390–5089 m). 

Referring to Rencher (2002), FA aims to reduce the redundancy 
among the variables by using a smaller number of factors. FA assumes 
that there is a set of latent factors fk which when acting in combination 
to generate the original variables x. 

Algebraically, in factor analysis the variables x1, x2, . . ., xp are rep
resented as linear combinations of a few variables f1, f2, . . ., fk (k < p) 
called factors. The factors are underlying constructs or latent variables 
that “generate” the x’s (Rencher, 2002). 

Without loss of generality, we assume that E[x] =0. Therefore, the 
factor analysis model for k < p common factors fk can be written as 
follows (Rencher, 2002): 

xi = vi1f1 + vi2f2 + ...+ vikfk + εi (1)  

Where the vij j = 1,…m are the factor loadings (or scores) and εi is the 
part of variable xi that cannot be ’explained’ by the factors. 

Equation (3.21) can be written in matrix notation as 

x = Vf + ε (2) 

f= matrix of new variable also called the latent variables in terms of 
k× n; V= the loading matrix in term of k × p and x = observation matrix 
in p× n. 

The emphasis in factor analysis is on modeling the covariance or 
correlations among the x’s. 

It is assumed that 

E[fk] = 0; var(fk) = I (3)  

E[εi] = 0; cov
(
εi, εj

)
= 0 i ∕= j (4)  

cov(εi, fk) = 0 (5) 

Any solution of the above constraints for f is denoted as the factors, 
and V as the loading matrix. 

Variance x may be write as 
Fig. 4. The geochemical logs (K, Th, Al, Fe, Ti, Si, Ca, H, S, Gd, U, Th, K) profile 
of the CCSD-MH (4390–5089 m). 
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var(xi) =
∑K

k=1
v2

ikvar(fk) + var(εi) (6) 

Because of var(fk) = I and var(εi) = ψ i 

var(xi) =
∑K

k=1
v2

ik + ψi (7) 

∑K
k=1v2

ikis the variance explained by the common factors, called the 
communality and represents the variance of xi common to all variables. 
The term v2

ikmeasures the magnitude of the dependence of xi on the 
common factor fk . If several variables xi have high loadings vikon a given 
factor fk, the implication is that those variables measure the same un
observable quantity, and are therefore redundant. While the second part 
(ψ i) is the variance specific to xi called the specific or unique variance 

Fig. 5. The cross plots of K against Al, Fe, Si, Ti, Gd, Th, H, S, Ca and U logs respectively.  
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and it is the contribution in the variability of xi due to its specific εi part, 
not shared by the other variables. 

So factor analysis is really a model for the covariance matrix Z of the 
data as 

cov(x) = cov(Vf + ε)
= cov(Vf ) + cov(ε)
= Vcov(f )VT + Ψ

(8) 

Because ofcov(f) = I, then we get 

Fig. 6. The cross plots of log Th against Al, Fe, Si, Ti, Gd, H, S, Ca and U log respectively.  
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VVT + Ψ (9)  

Where Ψ = diag(ψ11,ψ22, ...,ψpp)

Given Z as the estimator of cov(x), we want to find V and Ψsuch that 
Z = VVT + Ψ (3.30 10) 
It is important to note that if there are only a few factors (i.e., k << p), 

then we can get a simplified structure for Z. There are different methods 
such as principal component, maximum likelihood, and principal axis 

factoring and rotation to derive estimates V and Ψ for the model pa
rameters in Eqs. (2)-(5). 

FA is related to Principal Component Analysis (PCA) in that both seek 
a simpler structure in a set of variables but they differ in many respects. 
For example, two differences in basic approach are as follows (Rencher, 
2002): PCs are defined as linear combinations of the original variables, 
while FA, the original variables are expressed as linear combinations of 
the factors. In PCA, we explain a large part of the total variance of the 

Fig. 7. a-d.Cross plotting of geochemical logs. (a) Cross plot of Fe versus Al. (b) Cross plot of Si versus Gd. (c) Cross plot of Fe versus Ti. (d) Cross plot of Al versus Ti.  
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variables, in contrast FA seek to account for the covariance or correla
tions among the variables. 

Results and discussions 

Lithological identification- cross -plots 

Cross plots were utilized to examine the relationship between log 
type responses in order to understand the rock types from CCSD-MH. 

From Fig. 5.a-j, data grouping is well discernible in Fig. 5.a-f and the 
lithologies are well separated. In Fig. 5.g-j, discriminations of rock types 
are not as clearly evident as in Fig. 5.a-f. This is for the reason that the 
data are dispersed or lithologies are skewed by very low values and there 
are reasonably overlaps between lithologies. Therefore, the cross plot of 
K against Al, Fe, Si, Ti, Gd and Th logs are appropriate for separating 
metamorphic rocks. This fact is associated to K. Comparable perfor
mance of K is also visible in Konaté et al.(2015b, 2017); by inspecting 
the cross- plot log response of various geophysical logs, and geochemical 

Fig. 8. a-d.Cross plotting of geochemical logs. (a) Cross plot of Si versus Al. (b) Cross plot of Si versus Fe. (c) Cross plot of Gd versus Ti. (d) Cross plot of Si versus Ti.  
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logs respectively. Pan et al. (2005) based on cross plotting logging 
interpretation to make estimates of lithology.The authors’ conclusion 
was that the different rock types in the CCSD-MH can be well recognized 
using K against various geophysical logs such as density (DEN), natural 
gamma (GR), neutron porosity (CNL), the photoelectric absorption 
section index (PE) and resistivity logs. On the other hand, Salim et al. 
(2008) also used cross plotting technique to define lithological units of 
different rock units. They reported that GR is positively correlated to K 
(as well as Th, U content), and GR (as well as K, Th, U content) and DEN 
are efficient to discriminate metamorphic rocks. Luo and Pan (2010) 
used cross plotted conventional logs data, and the results allowed the 
authors to conclude that the lithology principally consists of paragneiss, 
orthogneiss, amphibolite, eclogite and ultramafic rocks. The logs cross 
plotting show that K and CNL are more prevailing in identifying meta
morphic rocks. Furthermore, the work of Pechnig et al. (2005) from 
several drilled well in continental crust, confirmed that K and CNL are 
more powerful in discriminating metamorphic rock type. Based on the 
aforementioned results, we can say that K is a key factor of lithological 
identification in metamorphic rocks. In an environment underlain by 
crystalline rocks, metamorphism plays an important part in producing 
changing mineral composition and structural variations of crystalline 
rocks (Maiti and Tiwari, 2009). K is movable throughout alteration and 
metamorphism process (Bartetzko et al., 2005). So K enrichment in the 
CCSD-MH is perhaps associated with UHP metamorphism. 

From Fig. 6.a-e, we can see that the cross plot of Th against Al, Fe, Si, 
and Ti are appropriate for discriminating between the rock types. 
However, the discriminations of the rock types are not as evidently 
distinct as Fig. 6.a-f. This is because orthogneiss is slightly scattered and 
coincide partially with paragneiss. In Fig. 6.f-i, the data are extensively 
scattered and there are solid overlaps between rock types. Paragneiss 
and orthogneiss cannot be distinguished. Hence, Th is not as powerful as 
K. Th has low mobility under metamorphism as compared to K. Cross 
plot of the positive correlation between K and Th (see Fig. 5.e) shows 
that, from amphibolites to orthogneisses, the intensity of K and Th is 
gradually increasing. So intermediate-high K and Th indicate the pres
ence of orthogneisses. This is consistent with Liu et al. (2005) which 
analyzed cores from CCSD-MH and concluded that orthogneisses are 
relatively enriched in K and Th. Additionally, the study of Salim et al. 
(2008) confirmed the positive correlation between K and Th content, 

and showed that K and Th content of gneiss is high. 
From Figs. 7.a-d and 8.a-d, we can observe that orthogneisses widely 

lie over amphibolites because the log signatures of these rocks are 
similar. This can be additionally seen in Table 1. However paragneisses 
are separated from orthogneisses/amphibolites. The cross plots of log Fe 
versus Al and Ti (see Fig. 7.a and c) show positive trend from orthog
neisses/amphibolites to paragneisses .This trend is related to the 
elemental concentration variability that is Fe increase with increasing of 
Al and Ti respectively. However an opposite trend is observed in the 
cross plots of Si versus Al, Fe and Ti respectively (Fig. 8.a-b and d). 
Similar opposite trend is observed in the cross plot of log Ti versus Gd 
(Fig. 8.c). Therefore Al, Fe, Si and Ti, Gd logs are helpful in dis
tinguishing amphibolites from paragneisses, and paragneisses from 
orthogneisses on the other hand. 

By analyzing the above development, we can conclude that K and Th 
logs are the most discriminating logs in UHPM rocks followed by the Ti, 
Al, Fe, Si and Gd logs. Table 1 shows the log values statistics for the 
metamorphic rock types from CCSD-MH (4390-5089 m). 

In situ geochemical –geophysical log relationship 

Geochemical logs and geophysical logs were compared in order to 
determine significant relationship between rock composition and log 
readings. This objective was reached using the Pearson correlation co
efficient. The results are presented in Table 2. Fig. 9 shows the 
geophysical logs profile of the CCSD-MH (4390–5089 m). In Table 2, the 
GR shows important positive correlation with K and Th respectively. So 
Th and K are the largest contributors to the gamma ray responses in the 
UHP metamorphic rocks from CCSD-MH. This assertion has confirmed 
by Salim et al. (2008).The authors showed that K and Th content of 
metamorphic rocks shows positive correlation with GR responses 
respectively. Again, in Table 2 there is no important correlation between 
CNL and H. This is not surprising, as the CNL logging tool cannot be used 
as a measure of formation porosity in crystalline rocks (Bartetzko et al., 
2005).The CNL tool measures the formation porosity according to the 
hydrogen content in the formation. Resistivity and acoustic logs display 
no significant relationship with any of the geochemical logs in Table 2. 
This can be additionally view in Figs. 4 and 9. The non-relationship can 
be explained by the fact that physical principles of resistivity and 

Table 1 
The log values statistics for the metamorphic rock types from CCSD-MH (4390–5089 m). The minimum, maximum, means values and standard deviation are showed 
for each electrofacies. An electrofacies characterizes a rock type by a specific set of log responses. By using core-log-correlation, the geochemical log data were 
allocated to the different metamorphic rock types (Serra 1984). From Table 1, the average K values of the orthogneisses are about 5.315% while for paragneisses and 
amphibolites are about 3.021% and 2.757% respectively. Intermediate Th value occurs in orthogneisses, with about 19.131 ppm. Besides the paragneisses and am
phibolites have lower Th values as compared to orthogneisses rocks. Similar performance is achieved by Gd. The average U of orthogneisses, paragneisses and 
amphibolite are 1.225±1.416 ppm, 1.077±1.093 ppm and 0.860±0.836 ppm respectively. The Al average values of orthogneisses, paragneisses and amphibolite are 
(0.038±0.016 w/w), (0.080±0.024 w/w) and (0.044±0.030 w/w) respectively. Orthogneisses and amphibolites are in similar ranges. Similar performance is made by 
Ti, Fe and Si.    

Gadolinium (ppm) Iron (w/w) Silicon (w/w) 
Lithology N Min Max Mean Std.Dev. Min Max Mean Std.Dev. Min Max Mean Std.Dev. 

Orthogneisses 5348 0.891 31.396 15.658 4.511 0.000 0.106 0.021 0.012 0.154 0.467 0.373 0.043 
Amphibolites 216 0.275 27.710 13.806 5.742 0.000 0.083 0.025 0.021 0.181 0.452 0.361 0.069 
Paragneisses 35 2.695 12.275 7.822 2.258 0.016 0.098 0.055 0.024 0.223 0.373 0.282 0.044   

Aluminum (w/w) Titanium (w/w) Potassium (%) 
Lithology N Min Max Mean Std.Dev. Min Max Mean Std.Dev. Min Max Mean Std.Dev. 
Orthogneisses 5348 0.000 0.114 0.038 0.016 0.000 0.012 0.001 0.000 2.307 9.132 5.315 0.614 
Amphibolites 216 0.000 0.116 0.044 0.030 0.000 0.009 0.001 0.002 1.244 5.825 2.757 0.947 
Paragneisses 35 0.027 0.106 0.080 0.024 0.001 0.013 0.006 0.003 2.519 3.582 3.021 0.371   

Thorium(ppm) Uranimum (ppm)  
Lithology N Min Max Mean Std.Dev. Min Max Mean Std.Dev.     
Orthogneisses 5348 2.845 40.709 19.131 6.478 0 9.156 1.225 1.416     
Amphibolites 216 0.954 26.250 7.908 5.462 0.014 4.861 0.860 0.836     
Paragneisses 35 7.370 25.848 11.328 3.756 0.129 3.509 1.077 1.093      

A.A. Konaté et al.                                                                                                                                                                                                                               



Results in Geophysical Sciences 8 (2021) 100030

11

acoustic tools are not significantly influenced by the chemical compo
sition of the main rock types (Pechnig et al., 2005). A negative rela
tionship was observed with the combination of K, and Th versus CNL, 
DEN and Pe respectively (Table 2, and Figs. 4 & 9). These are probably 
related to the atomic weight of K and Th in the formation, which impact 
the CNL and Density logging signatures (Pechnig et al., 2005). 

In situ chemical element-mineral relationships 

In this research it is supposed that the factors extracted by FA may be 
connected to the minerals that make up the rock in CCSD-MH 
(4390–5089 m). FA was carried out using a correlation matrix on the 
standardized values of the geochemical logs that is having a zero mean 
and variance of 1. 

We note that Ca, Gd, H, S and U were found with low communality 
(less than 0.4); the factor model was not fitting well including them. 
Based on this they were discarded from the model. The input logs 
studied were Fe, Al, K, Si, Th and Ti. Table 3 shows the eigenvalues, 
percent of total variance and cumulative variance percent explained by 
FA. Kaiser’s criterion was applied to determine the number of factors to 
extract. The scree test (Cattell, 1966) in Fig. 10 can also offer a very 
reliable and consistent suggestion of the number of factors to extract. 
From Table 3, we can see that the first two factors explain approximately 
76.261% of total variance. The original set of 6 logs has thus been 
reduced to a small set of 2 factors which accounts for 76.261% of the 
variance of the initial set. Table 4 shows the factor loading using Vari
max(Kaiser,1958). In Table 4, F1 describes 57.515% of the total vari
ance with high loadings of Si, Al, Fe, and Ti in between 0.84 - 0.97. This 
indicates that these logs show good agreement with F1. Al and Fe display 
the highest loads with F1. Amphibole minerals have been observed in 
many gneiss samples from CCSD-MH (Zhang et al., 2006). The chemical 
composition of Hornblende contains Ti, Fe, Si, and Al. So F1 may reflect 
amphibole mineral. 

F2 explained 18.746% of variance with high loading of K and Th. As 
mentioned by Yong and Sean (2013), a factor including two variables is 
supposed to be reliable if the variables are strongly interrelated with 
each another (r > 0.70) but uncorrelated with other variables. Based on 
aforementioned we can confidently say that K and Th are reliable since 
they show a high correlation value of 0.81 with one another. However 
each showed weak correlation values with Al, Fe, Si, and Ti respectively 
(see Table 2). The potassium content of metamorphic rocks is derives 
mainly feldspar±quartz. High feldspar and quartz content of gneiss 
made them to have distinctive high GR value (Salim et al., 2008). The 
study area is underlain mainly by gneiss associated with large K-feldspar 
(Zhang et al., 2003, 1996). K-feldspar is generally an abundance of K and 
Th (Bigelow 1992). Therefore, F2 can probably be referred to as 
K-feldspar mineral. Konaté et al.(2017) reached a similar conclusion 
when inspecting the Principal Component Analysis log response at depth 
100 to 2010 m from CCSD-MH. 

Conclusions 

Based on the study of the analysis of elemental concentration log 
data from the CCSD-MH (4390–5089 m) the following conclusions could 
be drawn: 

● Cross plot is an effective way to visualize in situ elemental concen
tration log data. The results show that K and Th logs are the most 
discriminating logs followed by Al, Ti, Fe, Si, and Gd logs.  

● Correlation between in situ geochemical logs and geophysical logs 
show that K and Th are the largest contributors to the gamma ray re
sponses. There is no significant correlation between CNL and H. Re
sistivity and acoustic logs display no significant relationship with any 
of the in situ chemical logs .A negative relationship was observed with 
the combination of K, and Th versus CNL, DEN and Pe respectively. Ta
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Fig. 9. The geophysical logs profile of the CCSD-MH (4390–5089 m).  
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● FA is a good method to condense and interpret data concerning 
geochemical logging data. FA was applied using principal compo
nent extraction method and the Varimax orthogonal rotation method 
to the in situ elemental concentration logs in an area of UHPM rock. 
The results show a 2 factor model-where factor 1 (amphibole min
eral) and factor 2 (K-feldspar mineral) described 76.261% of the 
variation in log responses. The model explained the constituent 
minerals that make up the rock and contribute to the characteriza
tion of rocks in the case of CCSD-MH. 
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Table 3 
Eigenvalues, percent of total variance and cumulative variance percent explained by factor analysis. Extraction method: Principal components method was used to 
extract factors. Marked zone is indicating factors with eigenvalues >1. This criterion was proposed by Kaiser (1960).  

Factor Eigenvalues % Total variance Cumulative% 

1 3.459 57.515 57.515 
2 1.125 18.746 76.261 
3 0.789 13.059 89.320 
4 0.439 1.313 96.633 
5 0.183 3.057 99.689 
6 0.019 0.311 100  

Fig. 10. The scree test of geochemical logs. The scree plot helps to determine the optimal number of factors. The eigenvalue of each factor in the initial solution is 
plotted in decreasing order. One then selects the index of the last factor before the plot flattens. Cattell (1966) suggested looking for the point at which the last 
significant drop or break takes place scree plot representing the eigenvalues. 

Table 4 
Percentage of factor loading obtained via Factor analysis. Varimax rotation 
(Kaiser, 1958) was applied to keeps factors uncorrelated while increasing the 
interpretability and utility of the factors.   

Varimax rotated result 
Well log data Factor1 (F1) Factor2 (F2) 

Al 0.963 − 0.114 
Fe 0.974 − 0.107 
Si ¡0.852 0.106 
Ti ¡0.843 − 0.087 
K − 0.048 0.798 
Th − 0.130 0.751 
% variance 57.515 18.746  
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