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Abstract
In this paper, we investigate the existence of mild solutions for a class of
stochastic functional differential impulsive equations with infinite delay on Hilbert
space. The results are obtained by using the Banach fixed point theorem and
Krasnoselskii—Schaefer type fixed point theorem combined with theories of re-
solvent operators. In the end as an application, an example has been presented to
illustrate the results obtained.
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1 Introduction

In this paper, we consider the stochastic integro-differential equation with impulses and
infinite delay in a separable Hilbert space X with inner product (-, -) and norm || - ||

(4 {u(t) _G (t,ut, /Otg(t, s,us)ds)] _ A {u(t) e (t,ut, /Otg(t, s,us)ds)] dt

+/tF(t —s) [U(S) -G (s,us,/o g(s, ur)drﬂ dsdt

0
+F (t,ut,/ f(t,s,us)ds) dt—l—H(t,ut,/ g(t,s,us)ds> dw(t),
0
te0,T);t#t;i=1,2,--- ,mmeN,
Au(t;) = Ie(u(ti7)),i = 1,2,--- ,m
uo() = ¢(-) € B,
(1.1)

where 0 < T < oo, the state u(-) takes values in a separable real Hilbert space X and
A: D(A) C X — X is the infinitesimal generator of a Cy-semigroup (7'(t));>0 on X,
fort > 0, T'(t) is a closed linear operator with domain D(A) C D(I'(t)); 0 =ty < t; <
.. <ty <ty +1 =T, are pre-fixed points and the symbol Au(t;) = u(t]) — u(t;”),
where u(t;") and u(t; ) represent the right and left limits of u(t) at t = ¢, , respectively.
The functions g : Dy x B, — X, f: D1 xB, —» X, G :[0,T] x B x X — X,
F:0,T]xB,xX —=X,0:D; xB, = X,H:[0,T] x B, x X — LI where L5
to be specified laterand /; : X — X, 7 =1,--- ,m are appropriate mappings satisfying
certain conditions to be specified later, where D; = {(¢,s) € [0, T]x[0,T] : s < t}, B,
denote the phase space defined axiomatically later. Let /' be another separable Hilbert
space with inner product (-, ) and norm || - ||x. Suppose {w(t) : t > 0} is a given
K-valued Brownian motion or Wiener process with a finite trace nuclear covariance
operator () > 0 defined on a complete probability space (€2, F,P) equipped with a
normal filtration {F;};>o , which is generated by the Wiener process w. We are also
employing the same notation || - || for the norm L(K’; X), where L(K; X) denotes the
space of all bounded linear operators from K into X. The history u; : (—o0,0] — X,
ut(#) = u(t + 0), belongs to some abstract phase space B, defined axiomatically;
the initial data {¢(t) : —oo < t < 0} is an Fy-adapted, B-valued random variable
independent of the Wiener process w with finite second moment. Stochastic differential
equations arise in many areas of science and engineering, wherein, quite often the future
state of such systems depends not only on present state but also on its history leading
to stochastic functional differential equations with delays rather than SDEs. However,
many stochastic dynamical systems depend not only on present and past states, but also
contain the derivatives with delays. Neutral stochastic differential equations with delays
are often used to describe such systems (see, e.g., [6, 15]).
Likewise the theory of impulsive differential equations plays a major role in investi-
gation of qualitative theory. Impulsive differential equations, are differential equations
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involving impulse effect, appear as a natural description of observed evolution phenom-
ena of several real world problems, for detail refer [20]. In other way, many dynamical
systems (Physical, Social, Biological, Engineering etc.) can be conveniently expressed
in the form of differential equations. In case of physical systems such as air crafts, some
external forces act which are not continuous with respect to time and the duration of
their effect is near negligible as compared with total duration of original process. Same
phenomena are observed in case of biological systems (e.g. heart beat, blood-flow, pulse
frequency), social system (e.g. price-index frequency, demand and supply of goods) and
in many other dynamical systems also such effects are called impulsive effects.

On the other hand, there has been intense interest in the study of impulsive neutral
stochastic partial differential equations with memory (e.g. delay) and integro-differential
equations with resolvent operators. Since many control systems arising for realistic
models depends heavily on histories (that is, effect of infinite delay on the state equa-
tions), there is a real need to discuss the existence results for impulsive partial stochastic
neutral integro-differential equations with state-dependent delay. Recently, the problem
of the existence of solutions for partial impulsive functional differential equations with
infinite delay has been investigated in many publications such as [2,3,5,7-11, 19] and
the references therein. Motivated by the previously mentioned works, in this paper, we
will extend some such results of mild solutions for (1.1).

Our main results concerning (1.1) rely essentially on techniques using strongly con-
tinuous family of operators { R(t),¢ > 0}, defined on the Hilbert space X and called
their resolvent. The resolvent operator is similar to the semigroup operator for abstract
differential equations in Banach spaces. There is a rich theory for analytic semigroups
and we wish to develop theories for (1.1) which yield analytic resolvent. However, the
resolvent operator does not satisfy semigroup properties (see, for instance [4, 17]) and
our objective in the present paper is to apply the theory developed by Grimmer [12],
because it is valid for generators of strongly continuous semigroup, not necessarily ana-
lytic. The first sufficient condition proving existence and uniqueness of the mild solution
is derived by utilizing Banach fixed point theorem and resolvent operator under Lips-
chitz continuity of nonlinear term. The second existence result for existence of the mild
solution is obtained via technique of Krasnoselskii—Schaefer fixed point theorem and
compact resolvent operator under non-Lipschitz continuity of nonlinear term. The main
contribution of this manuscript is that it proposes a framework for studying the mild
solution to stochastic fractional differential equation with infinite delay and impulsive
conditions.

The rest of the work is organized as follows. In Section 2, we recall some necessary
preliminaries on stochastic integral and resolvent operator. In Section 3, we study the
existence of the mild solutions of (1.1). Finally in Section 4, an example is presented
which illustrates the main results for equation (1.1).
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2 Preliminaries

2.1 Wiener Process

Throughout this paper, let X and K be two real separable Hilbert spaces. We denote by
(-, )x, (*, ) i their inner products and by || - ||x, || - || x their vector norms, respectively.
L(K, X) denote the space of all bounded linear operators from K into X , equipped
with the usual operator norm ||- || and we abbreviate this notation to £(X') when X = K.

In the sequel, we always use the same symbol || - || to denote norms of operators
regardless of the spaces potentially involved when no confusion possibly arises.

Moreover, let (2, F, {F;}+>0, P) be a complete probability space with a normal fil-
tration {F; };>¢ satisfying the usual condition (i.e. it is increasing and right-continuous
while F contains all P-null sets).

Let {w(t) : t > 0} denote a K -valued Wiener process defined on the probability
space (€2, F, {F: >0, P), with covariance operator Q); that is E(w(t), z) x (w(t), y) k =
(t A s)(Qx,y)k, for all z,y € K, where @ is a positive, self-adjoint, trace class op-
erator on K. In particular,we denote W a K-valued ()-Wiener process with respect
to {F:}i>0. To define stochastic integrals with respect to the ()-Wiener process with
W ,we introduce the subspace K, = Q2K of K endowed with the inner product
(u,v)g, = (QY*u, QY*v)k as a Hilbert space. We assume that there exists a com-
plete orthonormal system {e;} in K, a bounded sequence of positive real numbers )\;
such that Qe; = \e;, @ = 1,2,.. ., and a sequence {;(t)};>1 of independent standard

+oo
Brownian motions such that w(t) = Z V AifBi(t)e; for t > 0 and F, = F}*, where F,°

=1
is the o-algebra generated by {w(s) : 0 > s > t}. Let L = L5(Kj, X) be the space of
all Hilbert-Schmidt operators from K to X. It turns out to be a separable Hilbert space
equipped with the norm ||v||3:g = tr((vQY*)(vQY?)*) for any v € LS. Obviously, for

any bounded operator v € L9, this norm reduces to ||v||i8 = tr(vQu").

2.2 Deterministic Integro-Differential Equations

In the present section, we recall some definitions, notations and properties needed in the
sequel.

In what follows, X will denote a Banach space, A and B(t) are closed linear oper-
ators on X. Y represents the Banach space D(A), the domain of operator A, equipped
with the graph norm

lylly = 1Ayl +llyll,  yeY.

The set C(]0, +o0[;Y) is the space of all continuous functions from [0, +o0o[ into Y.
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We then consider the Cauchy problem

W (t) = Au(t) + / "It — s)u(s)ds, for t >0,
u(0) = up € X.

2.1)

Definition 2.1 (See [12]). A resolvent operator of (2.1) is a bounded linear operator
valued function R(t) € L(X) for ¢t > 0, satisfying the following properties:

1. R(0) = I and || R(t)|| < ne® for some constants 1) and 4.
2. Foreach z € X, R(t)x is strongly continuous for ¢ > 0.
3. Forz € Y, R(-)x € C'([0, +00[; X) N C([0, +o0[; V) and

R'(t)r = AR(t)x + /tF(t — s)R(s)xds
= R(t)Ax + /t R(t — s)I'(s)xds, for, t > 0.

For additional detail on resolvent operators, we refer the reader to [18] and [12].
The resolvent operator plays an important role to study the existence of solutions and
to establish a variation of constants formula for non-linear systems. For this reason, we
need to know when the linear system (2.1) possesses a resolvent operator. Theorem 2.2
below provides a satisfactory answer to this problem.

In what follows, we suppose the following assumptions:

(H1) A is the infinitesimal generator of a Cp-semigroup which is compact on X.

(H2) For all t > 0, ¢t — I'(¢) is a continuous linear operator from (Y || - ||y) into
(X, ]| - Il x). Moreover, there exists an integrable function ¢ : [0, +oo[— RT such
that for any y € Y, t — B(t)y belongs to W*([0, +-00[; X) and

<c)|yl|ly, for yeY, and t¢>0.
b

We recall that W*P(Q) = {w € LF(Q) : Db € LP(Q), V|a| < k}, where
D is the weak «-th partial derivative of w.

Theorem 2.2 (See [12]). Assume that (HI) and (H2) hold. Then there exists a unique
resolvent operator for (2.1).

d
HEFU)ZJ

In the sequel, we recall some results on the existence of solutions for the following
integro-differential equation:

u'(t) = Au(t) + /t L(t — s)u(s)ds + q(t), for t >0,
U(O) =ug € X.

(2.2)

where ¢ : [0, +00[— X is a continuous function.
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Definition 2.3 (See [12]). A continuous function v : [0, +oo[— X is said to be a strict
solution of (2.2) if

1. u € C([0, +oo[, X) N C([0, +o0[,Y),
2. u satisfies (2.2) for ¢t > 0.

Remark 2.4. From this definition we deduce that u(t) € D(A), and the function s —
['(t — s)u(s) is integrable, for all t > 0 and s € [0, +o0].

Theorem 2.5 (See [12]). Assume that (HI1), (H2) hold. If u is a strict solution of (2.2),
then the following variation of constants formula holds

u(t) = R(t)ug + /t R(t — s)q(s)ds, for t>0. (2.3)
0

Accordingly, we can establish the following definition.

Definition 2.6 (See [12]). A function u : [0, +oo[— X is called a mild solution of (2.2)
for ug € X, if u satisfies the variation of constants formula (2.3).

Theorem 2.7 (See [12]). Let ¢ € C'([0, +oc[; X) and u be defined by (2.3). If uy €
D(A), then w is a strict solution of (2.2).

Theorem 2.8 (See [17]). Assume that hypotheses (H1) and (H2) hold. Then, the corre-
sponding resolvent operator R(t) of (2.1) is continuous for t > 0 on the operator norm,
namely, for all to > 0, it holds that Ilzir% |R(to + h) — R(t)]| = 0.

%

To treat the impulsive neutral stochastic fractional differential equation, we present
the abstract space phase ‘By,.

Definition 2.9. Let i : (—00, 0] — (0, 00) be assumed to be a continuous function with

0
[ = / h(t)dt < co. For any ¢ > 0, we define the phase space:

—0o0

B, = {gp : (—00,0] — X such that (E||g0(-)||2)1/2 is bounded and measurable on

[—c, 0] with ¢(0) = 0 and / h(s) sup (E\|gp(§)||2)1/2 ds < oo} . (24)

—o $<¢<0

It is not difficult to verify that 5, is Banach space endowed with the norm

0
1/2
lelw, = [ hs) sup (EIo(O) ds, foraloes, @
i.e., (B, || - ||=,) is a Banach space [13]. Next, we consider the space

Br = {u:(—00,T] - X suchthat u|; € C(Jy, X) and there exist
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u(ty) = u(ty)and  u(ty), uo=¢ € By, k=0,1,2,--- ,m}. (2.6)
Here u|;, denotes the restriction of u to Ji =|ty,tx41], K = 1,--- ,m and the notion

C'(Jk, X) stands for the space of all continuous X -valued stochastic process {¢(t) : t €
Je,k=1,--- m}. Let|| - ||r be a seminorm in B which is defined by

1/2
lullr = uolls, + sup (Elu(s)|?)?, ue By 2.7)

s€[0,T7

Now, we give the following lemma [16].

Lemma 2.10 (See [14]). If u € By, then fort € [0, T, uy € By,. Moreover,

1/2 1/2
LEu))?) ™ < Nulls, <1 sup (Ellu(s)]1?)"" + [luolls,, (2.8)

s€[0,T7]

0
here | = / h(s)ds < oc.

—0o0

Now, we state the statement of Krasnoselskii—Schaefer fixed point theorem which is
our main tool to establish the second existence result.

Theorem 2.11 (See [1,16]). Let 1, Py be two operators such that :
(a) P, is a contraction, and
(b) P, is completely continuous.

Then either:

(i) the operator equation x = ®1x + Pox has a solution, or
(ii) the set A = {x € X : )\<I>1(§) + APyx = 2} is unbounded for A € (0,1).

Before expressing and demonstrating the main result, we present the definition of
the mild solution to problem (1.1).

Definition 2.12. A stochastic process u(-) : (—o00,T] x © — X is said to be a mild
solution to the problem (1.1) if

(1) wu(-)is measurable and F;-adapted for each ¢ > 0.
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(#7) u(-) has cadlag paths on ¢t € [0, T a.s. such that u satisfies the integral equation

($(t), t€ (—o0,0]

~R0(G(0.6.0) + G (1, [ gtts.)0s)

/Rt—s <5us,/fs7'u7d7'>
/R(t—s)H (s us, [ o(s, T, u, dT) dw(s € [0,4]
0

R(t—tl){( )+ Li(u(t; ) G(tl,ut+/0 g(t1,s,us)d ﬂ

t
+G (t,ut,/ g(t, s, us )ds>
0

t
+/ R(t—s)F (3 us,/ f(s, T, u, dT)dS
t1
t
—|—/ R(t—s)H (s,us, o(s, 7, u, dT) dw(s € (t1,t3)

t1

.R(t . t) [u(tm) () - G (tm, Uy / " s, us)dsﬂ

¢
+G (t,ut,/ g(t,s,us)ds>
0

t

+/ R(t—s)F (su/o f(s,T,uT)dT) ds

[e=]

tm

t s
—I—/ R(t—s)H (s,us,/ o(s, T, uT)d7'> dw(s), te (tm,T).
S ' (2.9)

3 Main Results

In this section, the existence of the mild solution for (1.1) is studied. Our first exis-
tence result is based on the Banach fixed point theorem. So, we make the following

assumptions.

(B1) Theresolventoperator R(t), t > 0 is compact and there exists a constant M such
that |[R(t)||* < M, Vt € [0,T].

(B2) (i) There exists a constant L > 0 such that

E||G(t,ur,v1) — G(t, us,v2)||* < La[|lur — uo||5, + Ellor — v2f]

forall ¢ € [0,T), uy, uy € By, v1,v € X and C; = sup ||G(¢,0,0)|

te[0,7)
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(i1) There exists a constant L, > 0 such that

2

t
Ey/wwaw—gwamw < Lyl —yls .
0

forallt € [0,7),z,y € Bpand C, =T sup g¢*(t,s,0).
(t,8)eD1

(B3) (i) The nonlinear map H : [0, 7] x B, x X — L(K, X) is continuous and there
is a constant Ly > 0 such

E|[H(t,u,v) — H(t,w,2)|]> < Li[|lu — w3, +Ellv - 2],
forallt € [0,7] and u,w € By, v,z € X.

(1) There exists a constant L, > 0 such that

2

t
Ey/mmam—gm&mw < Lol —yl3, .
0

forallt € [0,T], z,y € By.

(B4) (i) The nonlinear map H : [0,7]x B, x X — L(K, X) is continuous and there
is a constant Lx > 0 such

E||F(t,u,v) = F(t,w, 2)|* < Le[|lu — wlly, +Eljv - z[],
forallt € [0,7] and u,w € By, v,z € X.

(i1) There exists a constant L; > 0 such that

2

= < Lillz — ylls,

t[ﬁ@&@—fmamﬁ

forallt € [0,T], z,y € By.
(B5) There exist constants D; > 0 such that

ElL(w) ~ L) < Du—of’,  wveX i=1--.m

Theorem 3.1. Assume that assumptions (HI), (H2) and (B1)—(B5) hold. Then there
exists a unique mild solution for the problem (1.1) provided that

6 sup [M*{1+D;+ Lg(1+ Ly)} + La(1 4+ Ly) + M*T?Lp(1 + Ly)

1<i<m

+Tr(Q)M°TLy(1+ L,)] < 1. (3.1)
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Proof. We consider the operator ® : B — B defined by Pu(t) =

(6(0), te(—oo,O] |
~R()(G(0,6,0)) + (t w [ g<tsus>ds)

—i—/ORt—S <sus,/fSTuT)d7')ds
+/0 R(t — s)H (s us,/o Q(SaTauT)dT) dw(s), t€[0,t]
=) [uter) + 10t ) — 6 (g, [ ot suas )]

t t s
+G (t,ut,/ g(t,s,us)ds) + [ R(t—s)F (s,us,/ f(s,, UT)dT) ds
0 t1 0
t s

o[ re= 9 (s [ ols.ruir ) duto).ce et

:R(t — t) :[u(tm) + () - G (tm, Uy /O " s, us)dsﬂ
e <t,ut,/0tg(t,s,us)ds) +/t R(t—s)F (s,us,/osf(s,T, uT)dT> ds

tm

\ +/t; R(t —s)H <87us7/08 o(s, T, uT)dT) dw(s), tE€ (tm,T).

Let y(-) : (—oo0,T] — X be the function defined by

Thus 3y = ¢. We also define a function

o) { 0, te (—o00,0]

A1), telo,T]

for every z € C([0,7], X). We set u(t) = y(t) + 2(¢t) for each t € [0, 7). Clearly, u is
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the solution for problem (1.1) if and only if z satisfies zp = 0, t € (—o0,0] and z(t) =

(

—R(t)(G(0,9,0)) + G (t ye + 2, | g(t,s,ys + 24)ds )
0

t
/ R(t —s)F Svys_l'éw/ f(s, 7,y + 27)d )ds
0
/ R t— 3 (Says + 287/ 9(577—7 Yr + ZT)dT> dw<5)7 te [Oytl]
0
R(t —t1)[y(ty) + 2(ty )f Li(y(ty) + 2(t1))
-G (tbyqL + étja/ g(tla $,Ys + QS)dS)]
0

t
+G (t, Y + ét,/ g(t,s,ys + 2s)ds)
0

t S
+/ﬁw—wFGwﬁw¢/f@n%+zmT
0

t1

t s
+/ R<t - S)H (87 Ys + és;/ Q(Sa T, Yr + éT)dT> dw(8)7 te (tla t2]
0

t1

ds

Rt = tm)[y(t,) + 2(L,) + In(y(L,) + 2(2,,))

tm

_G (tma ytj;l + 2t;‘;7/ g(tma S’ yS + 2S)d8)]
0

t
+G (tv Yt + étv/ g<t7 S, Ys + 28>d8)
0

t S
i R@—@Féwﬁ%y/f@ﬂ%+%ﬂad8
tm 0

t s
—l—/ R(t —s)H (s,ys + 25,/ o(s, 7, yr + 27)d7'> dw(s), t€ (tm,T].
tm 0

Let BY. = {2 € Br: 2 =0 € B} and for any z € BY., we get

1/2 1/2
I2llr = [|2ollw, + sup (Elz()?)Y* = sup (B|=(8)])"*. (3.2)
te[0,T) te[0,T)

It is easy to verify that (BY., || - |mo ) is a Banach space. Now, we define the operator
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Q: B) — B by Qz(t) =

\

To prove the existence result, it is enough to prove that Q has a unique fixed point. Let

R{)(G(0,6,0)) + (tyt+zt7ogtsys+zsd)

+/Rt—s (sys—l—zs,/ f(s, 7,y + 27)d )ds
0 0

+ [ R(t—ys) (8, Ys + zs,/ o(s, T, yr + ZT)dT> dw(s), te€][0,t]
St + 207) + Lol + 2(67)

-G (tl,ytir —i—i’t;r,/o g(t1, s,us)ds ||

+G (t, Yi + 2, /Otg(t, s, us)ds)

+/t R(t — s)F (s,ys + 25, /OS f(s,myr + 2T)dr) ds

¢
Y

+/ R(t_S)H (Says+257/ 9(3777 y7+27)d7> dw(s), te (tlatQ]
t1 0

R(t = tm)[y(t,) + 2(t,) + In(y(E,) + 2(2,,))

tm

g(tm, s,us)ds)]
t
+G (tv Yt + 2t7 / g(t7 S, us)dS)

0

t
—l—/ R(t — s)F (s ys—l—zs,/ f(s, TyT+ZT)dT)d8

-G (tm, Ypr + ft;z,
0

/ R(t —s) (s,ys + zs,/ o(s, T, yr + zT)d7'> dw(s), t€ (tm,T].
0

z, 2" € B, then for t € [0,t,], we conclude that

E[|(@2)(t) — (Q=")(®)]*

t t
S BE HG (ta Yt + ét>/ g<ta S, Ys + és)ds) - G (t,yt + Q:a/ g(t> S, Ys + éj)ds)
0 0

+3E

/ Rt s) [F (s,ys i [ S+ z»dr)
0 0

s 2
—FGwﬁﬁé/f@ﬂ%+iﬂﬁ}%
0

t s
/ R(t—8> |:H (S,ys‘i_és,/ 9(577—7 yT_'_’%T)dT)
0 0

+3E

2
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2

)
0
LQ

Y (y 2 [ z:)dT)} du(s)
0

E[[(Q2)(t) — (@z")(®)]*
t
< 3La(Ellz — 2/ |ls, + Lol 2t — 2 [ls,) + 3/ I1R(t = s)l|ds
0

t s
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Similarly, for t € (¢;,t;41],1=1,--+ ,m, we get

E[[(Q2)(t) — (@) ()|
< 6[M*{1+Di+ Lg(1+ Ly} + La(1+ Ly) + M*T?Lp(1+ Ly)
+M?*TLy(1+ Ly)] ||z — Z*HQ%(%.
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By the condition (3.1), we conclude that QQ is a contraction map and therefore (Q has
a unique fixed point z € B9 which is just a unique mild solution for system (1.1) on
(—o0, T. This concludes the proof. U

Remark 3.2. The condition (3.1) requires that L be a small enough positive number.
For example, if G is constant, L can take any positive value. Moreover if G(¢, u,v) =
aw with o be a small enough positive number, we can take Ly = o

Now, we establish our second existence result. Sufficient condition for existence of
the mild solution for the system (1.1) is obtained by using Krasnoselskii—Schaefer fixed
point theorem and compact resolvent operator. Particularly, the nonlinear functions F/,
f, H and p are continuous functions without forcing Lipschitz condition. Consequently,
our result have more useful applications in this area. For proving the result, we have to
assume the following assumptions.

(B6) The map f(t,s,-) : B, — X is continuous for each (t,s) € D; and the map
f(-,-,u) : Dy — X is measurable for each u € B;,. There is a constant Ly > 0
such that

E|lf(t, s, w)l* < LW (Ellulls, ) .

for each u € B, where W : [0,00) — [0, 00) and a continuous nondecreasing
function.

(B7) The function F' : [0,7] x B;, x X — X is a continuous function such that

(i) t — F(t,u,v) is measurable for each (u,v) € B, x X;
(ii) (u,v) +— F(t,u,v) is continuous function for almost all ¢ € [0, T'].

(iii) There exists a continuous function mg : [0, 00) — [0, 00) and a continuous
increasing function K : [0, c0) — [0, 00) such that

E||F(t,u,v)% < mp(O)K (lully, +E[vl%)
for almost all ¢ € [0,7], u € By, v € X.
B I;: X — X,i=1,--- ,m are completely continuous functions such that

U = max EHIZ(U)H%(, Vue X,i=1,---,m.

1<i<m
(B9) There is a compact set ' C X such that
R(t — s)F(s,u,v), R(t — s)H(s,u,v), R(t — s)h(s) €

forallu € B, ve Xand 0 < s <t <T.
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(B10) (i) There is a continuous function my(-) € L,.([0,7],R") and an increasing
function Wy : R — (0, 00) such that

E|H(t, u,v)[[x < mu(OWa (Julls, +Elv]k) .
for almost all ¢ € [0,7], u € By, v € X.
(if) The map o(t,s,-) : B, — X is continuous for each (¢,s) € D; and map

o(+,-,u) : D; — X is measurable for each u € B;. There is a constant
m, > 0 such that

Ello(t, s, u)||* < mW, (|[ulls, )

for each u € By, where W, : [0, 00) — [0, 00) is a continuous nondecreas-
ing function.

T - ] 1
(B11) /0 R(s)ds < /5(0) K03 T W (o) £ W(s)ds < 00, Where

1 202 F
0 = 12 {22101, + 2o |

£ =max{Ls,L,}, W(x)=max{W(z)+ W,(2)},
R(t) = max{m*(t),TL},
F = max{Fy, Fa},
Fi1=8M?*(Lg||¢|l%, + C1) + 16LaCy + 8Ch,
Fo = 6M?V + 24M?LCy + 12M3Cy + 24LeCH + 1204,

1 1
m*(t) = max {ﬁl()ZQMQTmF(t), mlOlezTr(Q)mH(t)} :
2(M?* + 1)Lg(1+ Ly) < 1,
2412
(1—6M?% < 1.
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To this end, we introduce the decomposition of operator QQ such that (®,2)(t) =
(0, te(—00,0]
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t s
+/ R(t —s)H (s,ys + :23,/ o(s, T, y- + 2T)d7'> dw(s), te€ (tm,T].
0

tm

\

Lemma 3.3. Let us assume that (HI1)—(H2), (B1)—(B2) and (B6)—(B11) are fulfilled.
Then, ® is a contraction and P, is completely continuous on (—oo, T'.

Proof. Letq > 0and B, = {y € B : yllmg. < g}. Clearly, B, a bounded convex set
in ‘BOT. For z € 5, and by Lemma 2.10, we have that

lye + Zell5, < 2 (lyells, + 1205,

< 4 (F sup Elly()[[% + IIyoH%h> +4 (F sup E[|Z(7)[% + HéOH%h)
r€[0,1] T€[0,t]
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< 4(Il%, + )

To apply Theorem 2.11 for establishing the existence result, we have to show that ®; is
a contraction while ®, is a compact operator. To this end, we divide the proof into a few
steps.

Step 1. @, is a contraction on B5.. For 2, z, € B%. and t € [0, 1], we get

E[| (®121) () — (P122) (D)%

t
< E ‘G (tayt + (ZAl)t a/ g(t757ys + (él)s)ds>
0

2

t
-G <t7 Y + (22>t 7/ g(tv S, Ys + (22)5)615)
0

2Lc (Il (1), — (z2), I, + Lyl (1), — (22), [15,)

S0 tSBI;]EH (21) () = (z2) )7,

IA A

where ©g = 2Lg(1+ Ly) < 1. Fort € (t;,ti41],i=1,--- ,m,
E|| (©121) () — (P122) (1)1 %
t
< 208G (1t ([ attosnt (,)as)
0

2

t
e (t, w G [ otts+ <zz>s>ds)
0

t;
+2E HG (ti,yﬁ + (21)+ / g(ti,s,ys + (Zl)s)d3>
1 1 0
2

=6 (1 + Gy [ ottsi+ (2),)05)
< 01 swp Bl (20) (1)~ (22) ()P

te[0,7

where ©; = 2(M? + 1)L¢(1 + L,) < 1. Taking the supremum over ¢, we obtain
|(®121) = (Pr22) 17 < ©l21 — 2ll7,

where © = max ©; < 1. Then @, is a contraction on ‘B%. Next, we show that ®, is

i=1,-m
completely continuous.
Step 2. We first prove that ®, map bounded sets into bounded sets in B%.. To this
end, it sufficient to show that there exists a positive constant U such that for each z € B,
one has E|| (®22) (¢)||3- < U. Now, for each € B, and for t € [0,#],

El| (22) (t)]%
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2

t S
+4M2TY(Q)/ EHH (s,ys+2s,/ Q(s,T,yTﬂLéf)dT) ds,
ti 0

E[l (®22) (1)II%

t s
< 3M2(\If—i—q)+4M2T/ JEHF <8,ys+28,/ f(S,T,yTJrfT)dT)
t; 0

2

ds

2

t s
+4M2Tr(Q)/ E HH (s,ys + 28,/ o(s,T,yr + 2T)d7'> ds
t; 0

4M? (U + q)

+4M2T/ mp(s)K (4(\|¢|y%h +ql*) + / TLW(4(||0]%, + ql2))d7) ds
t; 0

+HAM?Tr(Q) x

t s
< [ s (4<||¢||%h a)+ [T walolR, + qz2>>d7) s
t; 0
= Uz

IN

SetU = max Uz,for all t € [0, 7). Thus, we have E|| (®,2) ()5 < U.

1=0,1
Step 3. <I>2 is contlnuous Let {z,},>, be a sequence in ‘B, with 2, — z € B,. By
continuity of /', H and [, we have

F (st G [ St @ar) 5 F (st @ [ Hlsin+ i),

i (st G [ atsovnt @ ar) 8 (s G [ oo+ )i,

when n — oo. For t € [0, t1], we get

E[| (®220) () — (922) ()%

< 9E / (t—s) [ (s,ys+(5n)s,/osf(s,y7+(én)T)dT)
(s ve + )8,/0 f(s,T,yT+(2)T)dT>} asl|
+2E‘ /0 R(t— ) [H (s,ys+(2n)5, /O S Q(S,T,yﬁ(znmm)

2

)

£5

A CURSCNY e VRO RTS ] Ee

E|| (®22,) () — (P22) ()]1%
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A
RG] )H'
+21(@) [ R0 HEM ( s [ etsmae+ 1)
1 (st ) [t + 21,007 ||

— 0, as n — oo.
Fort € (t;,tizq1],i=1,---,m,
E[| (®220) () — (222) (1)1 %
< AR[R(t — ) [Li(Za(ti 7)) — L2tk + 4B R(E — t)[Za(t:7) — 2%
+4EH/ [F(y+ /f s,y + (2 )

F( yo + (2). /f(s,T,yT+ )T)dTHdSH

)5
3

+4EH/ R(t [H L (5, /O g<5,7,y7+(z;z)T)dT)
),

—H( ey / o(s, 7, yr + ))df)}dw@)H;
< 4E||R(t — t)[ W) = 2% 2
HAMPE| L(y(t; ) + Zu(t:7)) — ]i<y(ti_) + 2%
AMPT / H [F ( 5 + (zn)f)d7>
(s o) / s )} |«
< AMPE||Z,(t;” %
+4M?E|| L (y +én(ti‘)>—fi(y(ti‘)+é(t DI

HATHQ / It P | [ (5o G [ ot + (),
1 (s + e [ ol y+<>>d)]H2ds

— 0 as n — oo.
Thus, we deduce that
E|| (®22,) () — (P22) (t)||§( — 0 as n— oo
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for all ¢ € [0, T]. Hence, ®, is continuous on B,,.
Step 4. @, maps bounded sets into equicontinuous sets of B,. Let 71, 72 € (¢;, t;41],
t=1,--- ,mwith o > 7. For z € B,

E[| (©22) (12) — (®22) ()%

< SE[[R(r2 —t;) — R(n — )| 2(t7 )%
+ 8E|[R(r2 — ti) — R(m — t:)] Ly (t:7) + 2(t:7)) 1%
+8E‘ /t "R — 5) — R(m — )]
< (st @ [ T+ @0 |
+8E‘ / :JR@ —§)— R(n - 8)] x
< (st @ [ T+ @00 |
4&%[?Mm—@FGwﬁwa’:ﬂa%+@mm)@2
+8E‘ /t " R(m = 5) — R(r — 8)] x
<t (s G [ olon <nm)mm2
+8E‘ / :16[3(72 ) = R(r — 8)] x
<t (s @ [ otssvn+ )0 ) duto)|
+8E‘ / R(ry — s)H (s,ys + (2)8,/08 o(s,y- + (2)T)d7> ds 2,

E[| (922) (r2) — (®22) (1) 1%
< 8||R(r — ti) — R(r — t)IPE[| 2(t: ) 1%
+8||R(re — ;) — R(m — 6)IIPE| L(2(t7)IIx

+8/ IR(7s — 5) — R(m1 — 5)|| ds x
t;

<[ IR~ 5) = Rer - )]

%

i s s

xIE ds
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T1
+8/ |R(m2 — s) — R(my — s)]| ds X

x/ |R(m2 — s) — R(m1 — s)|| X

S 2
<E||F (s,ys ey / F(s,90 + (z)T)dT> ds
0
+8 [ R s)lds [ IR~ 5)]
T1 T1 . )
xIE HF (s, Ys + (73)5 ,/ f(s,y- + (é)T)dT> ds
0
+8TH(Q) / "R = 5) — R(m — 8)|?
t; . )
xR HH (3, ys + (2), ,/ o(s,yr + (é)T)dT) ds
0
ST [ |Rlm =)~ B - )]
t1—e . )
XEHH (Says‘i‘(é)s,/ Q(S,yr‘i‘(é)T)dT) dS
0
+$1(Q) [ |R(m - 9" x
T . ,
xE HH (s, Ys + (2)5 ,/ o(s,yr + (é)T)dT) ds.
0

From the above inequalities, we see that the right-hand side of

E|| (®22) (12) — (P22) (1) %

Step S. ®, maps ‘5, into precompact subset of BY.. It is obvious that

V(0) = {®:(0)}

is relatively compact in X. For ¢t € (0, T|, we decompose P, as

Oy = Uy + Uy,

105

tends to zero independent of z € ‘B, as 7» — 71 — 0 with ¢ sufficiently small, since the
compactness of R(t) for ¢ > 0implies the continuity in the uniform operator topology.
Thus, the set {V,2 : z € B, } is equicontinuous.
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where (U2)(t) is given by

¢ [t S
/ R(t —s)F <5, Ys + 23,/ f(s,7,y- + 27)d7'> ds
0 0
t s

+ | R(t—s)H (s, Ys + Z/ o(s, 7, yr + 2T)d7) dw(s), te€][0,t]

0 0
t s

R(t_S)F (Says+2sa/

f(s, 7y, + 27)d7'> ds
0

t1

t s
+/ R(t — s)H (s,ys+25,/ 9(8,T,yr+27)d7) dw(s), te€ (t,to
0

t1

. . . . .
/ R(t —s)F (s, Ys + és,/ f(s,7y- + 2T)d7'> ds
t’l’L 0
t

+/ R(t—s)H (s,ys+és,/ @(smyTMT)dT) dw(s), t€ (ty,T]
0

tm

\
and (¥yz)(1) is given by

0, telo,
R(t - t1)[

]
)+ ), e

R(t — tm)[é(tfn) + I (2(t,)], te (tm, T

Let 0 < t < s < T fixed and let ¢ be a real number satisfying ¢ € (0,¢). For z € B,,
we define the operators (Vi°2)(t) =

( t—e s
R(S) / R(t — S 5)F (87ys + 257/ f(sa T, Yr + éT)dT) ds
0
t—e s

+R(e) / R(t—s—¢e)H (3, ys + 25, | o(s, T,y + ET)dT) dw(s),
0 0
t €[0,1]

t—e s
R(E) / R(t — S 5)F S,Ys + 257/ f(Sa T, Yr + 2T)d7) ds
0

t1

+R(e) /t—6 R(t—s—¢e)H (s, Ys + :28,/

t1 0
t e (tl, tg]

s

o(s, 7,y + 27)657) dw(s),

: Lo )
R(¢) / R(t—s—¢)F (s, Ys + 23,/ f(s,7,y- + éT)dT) ds
tTﬂ 0
t—e

+R(e) / R(t—s—¢e)H (s, Ys + 28,/ o(s, T, yr + 27)d7'> dw(s),
0

tm

t € (tm, T
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and (¥9z)

/ R(t — s)F <sys—|—zs,/fs7'yT—|—zT)dT)ds
0

+/ R(t—s)H ( s,ys + zs,/ o(s, 7, yr + ZT)dT) dw(s), te][0,t]
0 0

t—e
/ R(t — s)F (sys—l—zs,/fsryT—l—zT)dr)ds

/ R(t —s)H (&ys + 2/ o(s, 7, yr + 2T)d7) dw(s), te€ (t,to
t1 0

o : )
/ R(t —s)F <s, Ys + 28,/ f(s, 7y + éT)dT) ds
tm 0
t—e s
+/ R(t —s)H (s,ys + és,/ o(s, 7,y + éT)dT) dw(s), te (tm,T).
\ tm 0

By the compactness of the operators R(t), the set UX(t) = {(¥]°2)(t);2z € B,} is
relatively compact in X, for every ¢, ¢ € (0, ¢). One has for ¢ € [0, ¢4],

E[|(P52)(t) — (¥72) (1)

< QE’/OtE (R(t — ) — R()R(t — s — 2)] %
(sys /fSTyT ))dT)d 2
+2E’ /0 (R(t—s) — R(e)R(t — 5 — 2)] x

2

x H (3, ys + (%), /OS o(s, 7,y + (2)T)dr) dw(s)

L5

< 2[R9 - REORG—s =) »
wmp(s)K (4 (1613, +a?) + /0 TLW (4 (613, + ¢i2)) dr) ds
+21@) [ IR - 5) — ROR( -5 ) x
(s Wi (4 (108, +a) + [ TLW, (4 (1olR, +a)) a7 ) ds
B (52)(1) — (W) (1)

< [2 sup mp(t)K (4 (l0]%, +al) + T2LW (4(||¢H%h+ql2)))] x

te[0,7
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« /O CUR( = 5) — RER(E— 5 — £)|2ds

+ |2Tx(Q) sup my(E)Wx (4 (|9ll%, + al®) + T*LWo (4 (||9l1%, +al?))) | x

t€[0,T]

« /0 CIR(t = ) — RER( — s — 2)|2ds
< P/O_SHR(t—s)—R(s)R(t—s—s)H%s, (3.3)

where

P o= 2 sup me(OK (4 (61, + ) + T°LW (4 (l6ls, + a%)))

te€[0,7)
F2TH(Q) sy (Wi (101, + at%) + T°LWe (4 (1613, +41))).
te|0,
Fort € (ti’ti—l—l]’ 1= ]., e, M,

E[|(¥i2)(t) — (¥7°2) (1)

< 9E /t R(— 9 — ROR(— s — )

2

x F (s,ys +(2),, /8 f(s, 7, y- + (2)7)d7'> ds
0

+2E

/t' CIR(— ) — RER(— 5 — )]

< (5, v+ (2), /0 S5,y + (z)T)dT) du(s)

L3

IN

2 [RGB - s - o) x

xmp(s)K (4 ([lol1%, +al*) + /O TLW (4 (||¢ll%, + 4%)) dT) ds
rmQ) | TR - 5) — RER( — s — )P x

xmy(s) Wy (4 (o], +al*) + /0 TLW, (4 (|lo]1%, + q*)) dT) ds
< [2 sup (K (4 (161, +a2) + T LW (4 (IR, +qz2>>>] .

te[0,7)

« /t CUR( =) — RER(t — s — £)|ds
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+ | 2Te(Q) sup mpu(t)Wx (4 (10115, + al*) + T°L,We (4 (415, + ¢l?)))

te[0,7)

« /t IR = 5) = RER(t — s — 2)|%ds

t—e
< P/ |R(t — s) — R(e)R(t — s — €)||*ds. (3.4)
"

7

By Lemma 2.8, the right-hand sides of the above inequalities (3.3) and (3.4) tend to zero
as e — 0. So the set U.(t) = {(¥]2)(t); z € B,} is precompact in X by using the total
boundedness. We have

E[|(w12)(t) — (¥52)(0)]"

t s
| Re-srF (y e zm) s
t 0

t S
Rt — ) ( N z»df) du(s)
t—e 0
t

2
< QE’

2

+E

IN

2M%* | mp(s)K <4 (I, +al?) + /0 TLW (4 (|93, + ) dT> ds

t—e

+2M?Tr(Q) x

t s
x / i (5) Wi (4 (1613, +a?) + / TLW, (4 (|9l + a)) dr) ds.
(3.5)

Fort € (ti,ti+1],i: 1, ,m,

E[|(W12)(t) — (¥52)(0)]"

/t R(t - s)F (s,ys + 25, / f(s,y- + zT)dT)
t—e 0

t s
[ re-sm ( vtz [ s+ z»df) du(s)
t—e 0

2
< 2E

2

+E

Y

E[|(¥12)(t) — (¥52)(0)]"

t

< 2% [ mp(s)kc (4 (Iolfs, +a) + [ TLW (4 (101, +a7) df) s

t—e

+2M?Tr(Q) x

< [t (4101, +a) + [ TLW, (6l + a))dr) s
3.6)



110 K. Ravikumar, A.G. Amoussou, C. Ogouyandjou, M.A. Diop

The right-hand sides of the above inequalities (3.5) and (3.6) tend to zero as ¢ — 0.
Thus, there are relatively compact sets arbitrarily close to the set U (t) = {(V¥12)(t); z €
B,} and U(t) is relatively compact in X. It is not difficult to show that ¥y (B,) is
uniformly bounded. Since @, is equicontinuous. Thus, by the Arzela—Ascoli theorem,
we deduce that U; is compact. Next, we show that Wy (*B,)(t) is relatively compact for
every t € [0,T]. Fort € [0, ], itis obvious. Now for t € (t;,t;41],i = 1,...,mand z €
B, , weneed to show that U(t) = {R(t—t;) [;(y(t;")—2(t;7)) :,, 2 € By}, t € (i, tiva]
is relatively compact in C'([t;, t;41]; X). By the compactness and assumption on I; , we
conclude that the set {R(t — ¢;);(y(t;”") — 2(t;")), 2 € B,} is relatively compact in
X. It can be easily shown that the functions in U are equicontinuous. Thus, from the
Arzela—Ascoli theorem, it follows that W5 is a compact operator. Hence,®y = ¥ 4 WU,
is a completely continuous operator. [

Lemma 3.4. Let us assume that (H1)—(H2), (B1)—(B2) and (B6)—(B11) are satisfied.
Then, there exists a priori bounds C such that

luelly, <C. ted,
here C depends only on F, H and the function IC, W, Wy, W,.
Proof. From (2.9), we obtain for t € [0, t1],
Ellu(t)|% < 4M*E[G(0,¢,0[%

t
+4E G(t,ut,/ g(t,s,us)ds)
0 X

t s
+4E / R(t —s)F <s,us,/ f(s,, u7->d7') ds
0 0 X

t s
+4E /R(t—s)H (S,US,/ ,Q(S,T,UT)CZT> dw(s)

0 0 X
8M?(Le||0ll%, + C1) + 8[La(|lully, + 2Lglluelly, + 2C2) + Ci]

+4/ |R(t — s) ||ds/ |R(t — s) ||IEH (s,us,/ f(S,T,uT)dT)
0
2
+4/ |R(t — s) H2EHH (s us,/ Q(S,T,UT)dT)
0

ds
8M*(Lgl|¢ll%, + C1) + 8[La(llull, + 2Lgllully, +2C2) + Ci]

t s
+4M2T/0 mp(s)K |:HuSH2%h+/0 TLfW(”USH?Bh)dT:| ds

2

2

2

IN

2

ds

X

IA

t s
0PTQ) [ (W laall, + [ TLW, el Jar | s

Similarly, for t € (t;,t;41],1=1,--- ,m, we get
Ellu(t)|% < 6M°Efu(t,”)|% + 6ME[|R(t — ) Liu(t7))l%
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2

t;
+6E ||R(t — ;)G (ti,utﬁ,/ g(ti,s,us)ds>
0

t 2
+6E G(t,ut,/ g(t,s,us)ds)
0 X
t s
+6E / R(t —s)F <s,us,/ f(S,T,uT>dT) ds
ti 0 X

t s
+6E / R(t—s)H (s,us,/ o(s, T, uT)dT> dw(s)
ti 0 X

6ME|[u(t; )% + 6M>T + 12[La(|lul|%, + 2Lglluell3, +2C2) + C4]
+12M2[LG(||ut||%h +2L ||ut||%h +2C,) + C1]

+6/ HRt—s\ds/ HRt—sHEH (sus,/fSTuT )
HR(t—s)||2E (s,us,/ Q(S,T,u7—>d7')
t; 0

6MEfu(t)|x + 6M* W + 12[La([luelly, + 2Lglluclly, +2C2) + Ci
+H12M (L (luelly, + 2Lg|lull5s, +2C2) + C1

t S
20T [ (o) Il + [ TL (]
t;

X

2

2

IN

ds

ds

IN

t s
PTQ) [ mu)War |l + [ TLI ol )] s

Thus, for all ¢ € [0, T, we have

||Ut||‘23h
+12(M +1)La(1 +2L,) ——%

Ellu(®)|% <

— 6M?
6 S
+1 — 6M2M2 / mp(s [HUSH%h / TLfW(HuSH%h)dT} ds

6

R ) / ()W {[llfs, + [ TLW B, )| ds,

where F = max{F, F2} with

Fi = 8M?*(Lg||¢|l%, + Ch) + 16LcCs + 8C,
Fy = 6M?U +24M*LoCy + 12M*C + 24LeCy + 120

Thus, by Lemma 2.10, we have for every ¢ € [0, T,

lusllz, < 20%(0l%, + 207 S%Q]EIIU(S)H%h
se|0,
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202 F 207 [|uq |13
2 2 B
< 20%|oll5, + T2 12(M +1)La(1 + 2Lg)1_—6M2h

12l2M2 8
I [ ek [, + [ 7Ll )ar] ds

1212M2Tr(Q ’
T e /mH Wi {H“su%h /TLgWg(l\usl\%h)dT} ds.

Let v(t) = sup |usl|3, . Thus the function v is increasing in [0, 77 and we conclude
s€[0,t]

22 F 20%|ue 13
o) < 2z2u¢||33h+—1_6M F12AM + DEg(1+2L) o

112l_2 Z\Z / ma(s [ / TLW(v(r ))dr] ds

12l2M2T
. 6]\22 / myg($)Wu |:V(S) +/ TLQWQ(I/(T))dT] ds,
- 0

1 212 F
< 2
) < e {21l o

12[2M2T s
1—6M2 / mp(s [ —I—/ TLWW(v (T))dT:| ds

12112114322 /mH Wi {,,() /TLW( (r ))dT} ds},
(3.7)

2412

1 —6M?
inequality (3.7) by £(¢) and get

where § = (M +1)La(1+2L,). Now, we denote the right-hand side of the

v(t) < &(t) forall ¢e 0,77,

1 9 9 202 F
and £(0) = -3 {2l %, + T2 [ Thus, we have
, B 1 9 9 212 F
1212M>T t
- 0

+12l12]14—2§2(262)m1{(t)WH [y(t) + /0 t TLQWQ(V(T))dT] }
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1 20°F
= 192 2 =

+%mF(t)/c [g(s) + /O TLfW(g(T))dT]

122 M2Tr(Q)

e mntown e+ [ TLwi(erir] |

1 122M°T 1 122M°Tr(Q)
/ £) b Let
—gioee Ty e mHU} ©

where m*(t) = max {

R(t) = €(1) + / TEW(E(r))dr,

where £ = max{Ls, L,} and W(z) = max{W(z) + W,(x)}. Thus x(0) = £(0),
£(t) < k(t) and

/() < &)+ TEW(E())
m*(6)[K(k (1)) + Wa (k)] + TEW(s(1))

RIOIC(K() + Wa (k(1)) + W(K(1)],
where 7 (t) = max{m*(t), TL}. This gives that

INIA A

K(t) dS
/w K(r(0)) = Wi (D) + WA ()
T B £(0) ds
< / Rls)ds < /oo K(R(0)) + Wi (D) + W(n(e)

which demonstrates that the function {(t) < oo. Therefore, there exists a constant C
such that {(¢) < C, where C depends only on F, H and X, Wy, W, W,, Wand k. [

Theorem 3.5. Let us assume that hypothesis (H1)-(H2), (B1)—(B2) and (B6)—-(B11)
are fulfilled. Then, there exists at least one mild solution for the problem (1.1) on [0, T).

Proof. Let us consider the set
G(Q)={z€ B :2=2D; (2/\) + \Py(z) forsome € (0,1)}.
Thus, for any z € G(Q) we have |Ju||3, < C, forall¢ € [0,7] and hence

Izll7 < 17%C + ME[|¢(0)]”
= [7%C.
It implies that G is bounded on [0, T]. Hence, by the Krasnoselskii-Schaefer type fixed

point theorem, there exists a fixed point z(-) for Q on B, such that Qz(¢) = z(¢). Since
u(t) = y(t) + 2(t), u is a mild solution of the problem (1.1) on [0, T7]. O
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4 An Example

Consider the following impulsive neutral stochastic partial integro-differential equations
of the form

% {u(t,x) + Gy (t u(t — k, z), /t ailt, s,uls — k. x))ds)}

= o [u(t z) — Gy (t, /0 gltsu(s k,:z:))ds)]
+ tb(t—s)aa—z w(s,2) +Gr (suls — k. 2), [ gu(tmu(r — b, a))dr ) | ds
vz

0
+F (tu —k,x) /flt,s,u — k,x)) )

—i—H(tu( kx/f}ltsus—kx ds)dw
0<t<b;, 7>0, 0<zx<m7

u(t,0) =u(t,7) =0, tel0,T],
Au(t, z)|im=u(t!, x) —u(t;,x) = L(u(t;, z)) = / Z d;(t; — T)u(r, x)dr,

—0o0

(

ku(t,yc) =p(t,z), —o00o<t<0, 0<z<m,

@.1)
where p is continuous and [, € C(R,R), w(t) denotes a standard cylindrical Wiener
process in X defined on a stochastic space (2, F, P) and X = L*([0, 7]) with the norm
|| - ||. We define the operators A : X — X by Au = u” with the domain

D(A) :={u € X : u,u are absolutely continuous, u” € X, u(0) = u(w) = 0}.

Then -
Au = Zn2<u, Up)Un, u € D(A),

n=1

{un(x) - \/gsin(nx),n ~1,2,.. }

is an orthogonal set of eigenvectors of A. It is well known that A is the infinitesimal
generator of an analytic semigroup 7'(¢), ¢ > 0 in X, where

where

T(t)u = Zexp(—n%)(mun)un, ue X.

Let B : D(A) C X — X be the operator defined by
B(t)(y) = b(t)Ay, t>0, ye D(A).
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0
Now, we consider h(t) = e*, ¢t < 0. Then we get [ = / h(s)ds = 1/2 and define

lolf, [ hs) s (El0(OP)ds

s<¢<0

It is easy to verify that (B}, ||||s, ) is @ Banach space. Hence for (¢, ¢) € [0,T] x By,
where ¢(0)(z) = ¢(0, x), (0, x) € (—00,0] x [0, 7], let u(t)(x) = u(t, ). The function
G:0,T] xBp,xX =X, F:[0,T] xB,xX — X,H:[0,T] x By, x L] — X
are defined by

G(m / Sg@,s,@ds) (@) = G (t,cb(e,x), / sgl(t,s,d»ds)
= [ oo

4 /O t /_ OOO ba ()b () (r, 2)drds,

Pt [ fts0as) @) = £ (no.0), [ s o)

_ /0 (0 (L, s, 2, ds, ))ds
/ / bals)iis(t, ., 6(s.2))6(, x)drds,
i (1o [ ottsoris) @) = (1000, [ ots0s)
-/ (s, 7,005, 2))ds
/ / ba()ba(t. 5, 7, 6(s,2)) 6. 2)ddrds,
Lo = [ oo 4i(~s)6(0)ads,

where

(1) The function v (#) > 0 is continuous in (—oo, 0] satisfying

[oomen e ([ )" <

(2) by, b3 : R — R are continuous, and

(5
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(3) The function 52, as : R — R are continuous and there exist continuous functions
ri,q; - R — R j =1,2,3,4 such that

bt s, 2,y)| < ri(t)ra(s)lyl,  (t,s,2,y) € R,
bs(t, 5,2, )| < rs(t)rad(s)lyl, (¢ s,2,y) € R,
jay(t, s, 2,9)| < (t)qa(s)lyl,  (ts,2,y) € RY,
|as(t, s, z,y)| < gs(W)au(s)lyl, (¢ s,2,y) € RY,

<
(L) <o ()<

o0

" ()’

3

1/2
h(s) ) ,wherei =1,---,m

(4) The functions d; € C(R,R) and L;, = ( /
are finite. -

Thus the system (4.1) can be reformulated as (1.1). Moreover, GG, F’, and H are bounded
linear operators with E||G|3 < Lg, IE||HH%(K7X) < Ly, where

Le = [y + Tllbellscvel,
Lp = [||r1]|o LY + [|baloolrs]| o2 L5]%,
Ly = [||q1llsL{ + l|a2||oc llgsl| 2 L3)*.

Moreover, if b is a bounded C-function such that ¥’ is bounded and uniformly contin-
uous, then (H1) and (H2) are satisfied, and hence, by Theorem 2.2, has a resolvent
operator (R(t)):>o on X. Therefore, we may easily verify all the assumptions of Theo-
rem 3.5 and hence, there exists a mild solution for system (1.1).

5 Conclusion

In this paper, we investigate the existence of mild solutions for a class of stochastic func-
tional differential impulsive equations with infinite delay on Hilbert space. The results
are obtained by using the Banach fixed point theorem and Krasnoselskii—Schaefer type
fixed point theorem combined with theories of resolvent operators. Our future work
will be focused on investigating the existence of mild solutions for a class of stochastic
functional differential impulsive equations driven by a fractional Brownian motion with
infinite delay.
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