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A B S T R A C T

This study presents a new method for evaluating the effectiveness of roadside PM10 and PM2.5 reduction sce-
narios using Machine Learning (ML) based models. The ML methods include Artificial Neural Networks (ANN),
Boosted Regression Trees (BRT) and Support Vector Machines (SVM). Traffic, meteorological and pollutant data
collected at nineteen Air Quality Monitoring (AQM) sites in London for a period between 2007 and 2012 was
used. The ML models performed very well in predicting the concentrations of PM10 and PM2.5 with around 95%
of their predictions falling within the factor of two of the observed concentrations at the roadsides. The pre-
diction errors observed were very small as indicated by the average normalised mean gross errors of 0.2. Also,
the predictions of the models correlated well with the observed concentrations as shown by the average values of
R (0.8) and index of agreement (0.74). Additionally, when some PM10 and PM2.5 reduction scenarios were
modelled, the ML models predicted various degree of reductions in the roadside concentrations. In conclusion,
well trained ANN and BRT models can be successfully applied in predictions of roadside PM10 and PM2.5 con-
centrations. Moreover, they can be applied in measuring the effectiveness of roadside particle reduction sce-
narios.

1. Introduction

Urban air pollution is increasingly becoming the major environ-
mental concern in cities around the world. The growth of population
within major cities has resulted in an unprecedented increase in ac-
tivities and higher demands for energy and transportation. These fac-
tors contribute significantly to urban air pollution emanating from
often congested major road networks. Urban air pollution can be ef-
fectively managed through careful planning and execution of Urban Air
Quality Management (UAQM). The key components of UAQM consist of
a clear definition of objectives and standards, well-designed air quality
monitoring network and reliable air quality modelling. These compo-
nents help in the design of air quality control strategies and in mea-
suring their effectiveness. Air quality modelling is an important aspect
of the UAQM as it helps in taking a decision on the main issues relating
to the budget for the UAQM and predicting the likely effects of potential
control strategies.

Machine Learning (ML) techniques have been used in air quality
modelling in the last two decades (Yi and Prybutok, 1996; Gardner and
Dorling, 1998). A search for more viable models than the operational
air quality models leads to many studies on the use of various ML

methods in air quality modelling. Operational air quality models such
as ADMS-Roads (Mchugh et al., 1997) and OSPM (Berkowicz, 2000)
require understanding of the interactions between the air quality
variables and meteorological conditions. Most of the operational
models are deterministic and are limited in so many aspects. For ex-
ample, the natural phenomenon involved are difficult to characterise
accurately. Also, the use of default parameters and the lack of real
observations with the same spatial resolution with which to compare
the model outputs are among the limitations of the operational models
(National Research Council, 2007; Chave and Levin, 2003). In addition,
most of the operational air quality models are based on steady-state
Gaussian plume models which are limited by the assumptions regarding
changes of wind and source emissions over time and do not include the
detailed chemistry of particle pollutants (Pelliccioni and Tirabassi,
2006; Lagzi et al., 2013). Other sources of uncertainty in the opera-
tional models are the inherent uncertainty associated with data re-
quired to run these models. Emission rates estimated from emissions
models are an excellent example of the data needed to run the models,
and in most cases, they accommodate up to ± 50% uncertainties (Debry
and Mallet, 2014). Also, computational time and effort are part of the
constraints that lead to the simplification of operational models.
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In contrast, machine learning methods such as Artificial Neural
Networks (ANN), Boosted Regression Trees (BRT) and Support Vector
Machines (SVM) can build air quality models with comparable or better
accuracy. This performance can be achieved at a lower computational
cost and with no assumptions on the atmospheric processes involved
(Gardner and Dorling, 2000). Machine learning algorithms can handle
complex and nonlinear relationships that exist between air quality
variables (Esplin, 1995) and produce models that perform well in pre-
dicting unseen data (Elangasinghe et al., 2014b; Balsamà et al., 2014).
ANN methods have been used in many air quality studies (Taspinar,
2015; Ragosta et al., 2015; Elangasinghe et al., 2014a) involving pre-
diction and forecasting of air pollutants ranging from the current hour
to several days in advance (Russo et al., 2013, De Gennaro et al., 2013).
Many studies involving ANN often use cross-validation or evolutionary
algorithms such as Genetic algorithm and particle swarm optimisation
methods to derive an optimum architecture for the ANN models (Ding
et al., 2011a, 2011b; He et al., 2014). Also, some air quality studies
often combined ANN with feature selection methods such as PCA
(Taspinar, 2015; Ragosta et al., 2015), stepwise regression (Russo et al.,
2013; Lima et al., 2013), and cluster analysis (Elangasinghe et al.,
2014b). Suleiman et al. (2016b) combined elastic-net regression with
ANN and produced models for prediction of roadside particles with
higher prediction accuracy and fewer predictor variables than standa-
lone ANN models.

This paper presents a new method for evaluating the effectiveness of
roadside PM10 and PM2.5 reduction scenarios using ML based air quality
models (ANN, BRT and SVM). The paper applied the Meteorological,
Pollution and Traffic data collected from nineteen monitoring sites in
London to train the ML models for the prediction of particle con-
centrations at the sites. The models were also applied to predict the
likely effects of a hypothetical air quality management scenario on the
concentrations.

2. Method

2.1. Air quality monitoring (AQM) sites

The AQM sites for this study were selected from the London Air
Quality monitoring sites categorised as strategic by Moorcroft and
Marner (2011). The strategic sites include the sites that are being used
as Average Exposure Indicator Reference Sites for PM2.5 and Low
Emission Zone (LEZ) evaluation sites. They are also part of the UK
Automatic Urban and Rural Network (AURN). The sites are mostly
maintained by the London boroughs, Department for Environment,
Food and Rural Affairs (DEFRA), and Transport for London (TfL). Ad-
ditional criteria used in selecting these sites are the data availability
and the type of the site. First, roadside and kerb sites with available
data were chosen and either an urban or suburban site located upwind
of the roadside or kerbside sites were used as their background sites.

Fig. 1 shows the distribution of the AQM sites across London and the
average PM10 concentrations at the sites. The selected AQM sites con-
sists of two kerbside, ten roadside, four urban background, and three
suburban sites. The kerbside and roadside sites are located within 1 and
10m from the major roads. Some of the sites (i.e. HK6, IS2, KC5, and
MY1) are placed in street canyons while GR5, GR8, KC2, CR4 and CD3
sites are located near junctions. Only BT4 and GR8 sites are situated in
an open area (see Table 1). The BL0, CR3, CT3, GR4, IS6 and KC1 sites
are either urban or rural background monitoring sites which are mostly
located in areas where there is less influence of local pollution sources.
Among these sites, PM10 data was collected from fourteen sites while
PM2.5 data was collected from 6 sites.

2.2. Data

The data being monitored at the AQM sites include both particles
and gaseous pollutants (PM10, PM2.5, NOx, NO2, NO, SO2, CO, and O3),

traffic volume and speeds. Others are meteorological variables wind
speeds, wind direction, solar radiation, relative humidity and ambient
temperature. The instruments used for the monitoring of PM2.5 and
PM10 at most of the sites include two similar Tapered Element
Oscillating Microbalances (TEOM) Model 1400AB with different sam-
pling heads design, filter dynamics measurement system (FDMS) and β-
attenuation analysers (Aurelie and Harrison, 2005).

For this study, Traffic, Pollution and Meteorological data are re-
quired at each monitoring unit to develop the ML models. However, due
to unavailability of a reliable meteorological data at the stations, data
monitored at Heathrow Airport Weather Station including wind speeds,
wind direction, solar radiation, relative humidity and ambient tem-
perature was used. It was assumed that data from the Heathrow Airport
gives a reasonable overview of the general meteorological conditions in
London (Manning et al., 2000). The hourly pollutant data for the period
between 2007 and 2012 was obtained through the London Air Archives
(London Air, 2013) and UK Air Quality Archive (UK-AIR, 2013). While
the meteorological data for the same period was collected from BADC
data services (MIDAS Land Surface, 2013). The Continuous traffic data
in London for the same period available for this study was only for MY1,
HK6, BT4 and KC2 sites, therefore, at the remaining sites an estimate of
the traffic was provided based on the manual count data compiled by
the Department for Transport every year at some traffic count points on
road links across the UK (DFT, 2014). The data collected from these
sources was used for the development of the ML models.

As shown in Table 1, the average hourly traffic volume at TH4, GR8
BT4, MY1 sites was between 3327 veh/hr, and 7000 veh/hr. The
average mean PM10 concentrations at all the sites were between
21.11μg/m3 at KC1 and 43.25 μg/m3 at MY1 and in most of the sites the
values fell under the EU limit value of 40 μg/m3 annual mean. The 95th
percentile of the PM10 concentrations at the sites ranged from 49.0 μg/
m3 at BL0 to 73.8 μg/m3 at GR8. The sites with high traffic volume were
observed to have high concentrations of the particle concentrations as
shown in Fig. 1. The percentages of missing data in all the sites selected
were less than 10% except at KC2 where the missing data was up to
19%. The average PM2.5 concentrations at the sites were also below the
EU target value of 25 μg/m3 annual mean. It ranged between 14μg/m3

and 18 μg/m3 at the five of the six roadside sites while it was 22.4 μg/
m3 at MY1. The 95th percentiles of the PM2.5 concentrations range from
25.10 μg/m3 at HK6 to 47 μg/m3 at MY1. The percentages of PM2.5

missing data at five sites were less than 10% while it was up to 18% at
MY1.

The average wind speed measured at Heathrow airport between
2007 and 2012 was 2.0m/s and the 95th percentiles, and the maximum
wind speeds were 9.6m/s and 4.2 m/s respectively (see Fig. 2). In
London, the dominant winds were from the Southwest and West di-
rections. These directions govern the location of the air quality mon-
itoring sites. For the sites located in street Canyons, the effect of cross-
Canyon vortex are caused by the prevailing wind which makes the flow
circulate within the street canyon and deliver most of the pollutants to
the leeward side of the street canyon (Tomlin et al., 2009), hence the
location of the monitoring site. The temperature fluctuated between
−6.4 in the winter and reached up to 35 °C in summer while the
average temperature was 12 °C as shown in Fig. 2. More detail analysis
of the data used in this study can be found in (Suleiman et al., 2016a;
Suleiman, 2016).

2.3. Machine learning methods selected for the study

Machine Learning (ML) systems are sets of algorithms seeking to
perform a task based on the set of training examples presented to them
in the training data with limited human interaction. A typical ML
process involved data representation, evaluation, and optimisation with
the main goal of achieving generalisation of the unseen data. The focus
of this study is the use of three supervised ML methods in air quality
modelling. The methods used include Artificial Neural Networks
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(ANN), Boosted Regression Trees (BRT) and Support Vector Machines
(SVM). Detailed descriptions of the ANN and BRT methods im-
plemented in this study can be found in (Suleiman et al., 2016b) and the
SVM method is described in (Chunming et al., 2010; Cherkassky and
Ma, 2004; Singh et al., 2013).

2.4. Machine learning modelling

The ML modelling process adopted for this study involves five
stages: data preparation, feature selection, model training, model
testing and model evaluation. Each of these stages have been applied
for the development of ANN, BRT and SVM based PM10 and PM2.5

prediction models using R statistical software (R Developent Core
Team, 2015).

2.4.1. Data preparation
The predictor variables selected for the ML modelling comprises

background PM10 and PM2.5, background and roadside NOx, NO2, SO2

and CO. PM10 and PM2.5 emission rates of the traffic composition (i.e.
petrol cars, diesel cars, taxi, LGV, Rigid HGV, articulated HGV, Bus and
Coach and motorcycle) constitutes the traffic variables in the input
space. The remaining variables are meteorological variables including
Rainfall, Relative humidity, solar radiation, Temperature, Barometric
Pressure, Wind Speed and Wind directions. Roadside PM10 and PM2.5

are the target variables. Prior to the model training missing data were
imputed using Multiple Imputations by Chained Equation (MICE) (Van
Buuren, 2007, Buuren and Groothuis-Oudshoorn, 2011). The effect of
the imputation on the data and the accuracy of the models was in-
vestigated. Details of the data imputation validation can be found in
(Suleiman, 2016).

2.4.2. Feature selection
Principal Component Analysis (PCA) was used to pre-process the

predictor variables data for the ANN models. PCA derives uncorrelated
variables (i.e. PCs) that reduce the dimensionality of the input space
which will enhance the performance of the ANN models to be devel-
oped. The first PCs that explained 99% of the variance in the data were
selected as the model's inputs. For the BRT and SVM all the variables
were used. The BRT algorithms have inbuilt mechanisms for feature

selection while SVM algorithms are uses regularisation (e.g. ridge re-
gression) to enhance the performance of the models which is in-
dependent of the dimensionality of the input space.

2.4.3. ML model training and testing
Prior to the training of the ML models, the data prepared for the

modelling was divided into eighty percent for training and twenty
percent for testing. Subsequently, the train function in caret package of
R software was used to determine the optimum model parameters of all
the ML models considered. The function uses a user defined resampling
method (e.g. repeated k – fold cross – validation), modelling method
(e.g. ANN, BRT or SVM) and its corresponding parameters (e.g. number
of hidden neurons and decay values for ANN) to fit several models over
the specified range of the model parameters. The range of the para-
meters to be used is normally determined using trial and error. The
resampling method specified (e.g. repeated k – fold cross – validation)
is used to hold back a sample and fit the model on the remainder of the
samples. The held-out samples would then be used to evaluate the
performance of the trained models. This procedure is repeated until all
the samples have been used for fitting the model and as holdout sam-
ples. The optimal model parameters would then be determined based
on the performance of the models built. The final models would then be
fitted to all the training data set using the optimal parameters (Kuhn,
2008). A repeated version of the k-fold cross-validation was adopted in
this study where k=10 was used and repeated five times. The trained
models were then tested for the prediction of roadside PM10 and PM2.5

concentrations using the test data set. The selection of the predictor
variables and the model parameters were carried out for one re-
presentative site (MY1) which is in central London. Thereafter, the
same combination of input variables at each site and parameters se-
lected for each method, were used to train and test one model for each
monitoring site.

2.4.4. ML model evaluation
The performance of the models was evaluated using various func-

tions including fraction of prediction within the factor of two of the
observed concentrations (FAC2), Normalised Mean Bias (NMB), and
Normalised Mean Gross Error (NMGE). Others include Root Mean
Squared Error (RMSE), coefficient of correlation (R), Coefficient of

Fig. 1. Air quality monitoring sites.
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Efficiency (COE) and Index of Agreement (IOA). The models were also
evaluated based on their accurate prediction of annual statistics of the
particle concentrations.

2.5. EUROIV/VI air quality management scenario

The main contribution of this paper is to investigate the use of the
ML methods in evaluating the effectiveness of air quality management
options involving reduction PM10 and PM2.5 concentrations. To achieve
this goal, a hypothetical air quality management scenario called
EUROIV/VI scenario was conceptualised to verify the use of the ML
models in real life applications. The EUROIV/VI scenario assumed that
only EUROIV/4 petrol and EUROVI/6 diesel vehicle standards will be
permitted to drive on the roads in the study area in 2011 and 2015. The
emission standard restriction proposed in the scenario was im-
plemented through LAQM Emission Factor Toolkit (EFT) version 6.0.1
(DEFRA, 2015). The EFT requires vehicle counts (veh/hr), average
speed (km/hr), link length, road type, road name, projection of vehicle
composition and Euro traffic composition (Euro1, Euro2, Euro III,
Euro6 etc.) as inputs. The fleet composition data in London for mo-
torways, central, inner and outer areas was used in the EFT to estimate
the emission rates from the total traffic for PM10 and PM2.5 including
PM10 and PM2.5 from tyre, brake wear and road abrasion emission
sources.

As stated in section 2.4.1, the traffic emissions were selected as part
of the input variables for the ML models. The use of the emission rate as
part of the input data for the ML models is expected to provide a
channel through which the response of the models to the changes in the
emissions can be investigated. If the response of the models is positive,
then they could be used as management tools for measuring traffic-
related air quality control scenarios. Otherwise, they could only be used

for prediction of the actual concentrations. Therefore, the difference
between the emission rates estimated with and without the scenario
was obtained. The average difference between the two emission rates
was then subtracted from the hourly emission rates used to estimate the
traffic emissions in the input data to reflect the changes due to the
scenario assumptions. It is important to note that the scenario did not
forecast any changes in the number of vehicles entering the study area
for simplicity. Consequently, the emission rates were estimated based
on the premise that all the vehicles have met the minimum standard
imposed. After the traffic emissions were estimated based on the sce-
nario, the ML models were used to predict the PM10 concentrations in
2011 and in 2015. For the PM2.5, the models were tested for 2012 and
2015 due to data availability.

3. Results and discussion

3.1. Predictor variable importance

The most important variables for the ANN models were determined
using PCA. The results show that the first two PCs contributed about
49% and 90% of the total variation in the input data for the PM10 and
PM2.5 models respectively (see Table 2).

The results from the PCA show that vehicle emissions are the most
influential variables in PC1 and carry about 35 and 77% proportion of
variance in the data for the PM10 and PM2.5 ANN models training re-
spectively. The next most important variables are the roadside and
background NO2 and NOx, followed by temperature, wind directions
and temporal variables respectively. The contribution of the variables
in the case of PM10 models is more distributed across the PCs than in the
case of PM2.5 models. The first PCs captured the most important posi-
tive relationship between the traffic variables and the roadside

Fig. 2. Summary of the meteorological data. Note: in Fig. 2, the blue and red colours on the rectangular bar at the bottom of the plots indicate the availability and
non-availability of the data respectively. The percentage of the data captured for every year is written in green on the upper part of each year data plot. The
minimum, maximum, number and percent of missing data, mean, median and the 95th percentile for each variable plotted are shown in black. The panel to the right
of the time series plots is the density plots indicating the distribution of the data over the selected periods.
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pollutants. Also, the second PCs show the inverse relationships between
the temperature and wind speeds on one hand, and roadside and
background pollutants on the other hand. This is an indication of rising
pollution levels during cold temperature which might be as result of
high residential heating and condensation of volatile compounds. The
pollution levels could also decrease when urban ventilation increases.
The information gained from the PCA suggest that accurate data on
traffic, background/roadside pollutant and meteorological variables
could help in developing ML models that can predict the levels of
roadside particles with reasonable accuracy. Moreover, controlling
gaseous pollutants such as NOx might contribute in reducing the par-
ticle concentrations or it can serve as a reasonable proxy for the particle
concentrations.

Unlike the ANN method, the BRT, identified roadside NOx, NO2, CO
and background particle concentrations as the most contributing pre-
dictor variables to the performance of the models. In addition, the
contribution of the remaining variables was nearly the same and very
small compared to those mentioned.

3.2. ANN, BRT and SVM model parameters

The model parameters for the ANN method are the number of
hidden neurons, and weight decay. Optimum weight decay values were
selected from 0, 0.001, 0.01, 0.1, 0.2, 0.5, 0.7, 0.8, 0.9, and 1, and the
optimum number of hidden neurons was searched between 1 and 50.
The performance of the models with different weight decay values
(> 0) was observed to vary only little while higher number of hidden
neurons leads to marginally better models than those with small
number. The final models selected for the PM10 and PM2.5 predictions,
were the models trained with 49 hidden neurons and the weight decay
values of 0.8 and 1.0 respectively. The number of the Principal
Components (PCs) which explained 99% of the variance in the data
were found to be 19 for both PM10 and PM2.5 models.

The optimum BRT parameters for each pollutant were searched
between five different learning rates (i.e. 0.001, 0.01, 0.05, 0.1, and
0.5), the number of trees from 1 to 10,000, tree complexities from 1 to
10 and a fixed bag fraction of 0.5. The learning rate ( =lr 0.1), tree
complexities =( d 5) and number of trees (1000) gave the models with
the best performance for both PM10 and PM2.5 predictions.

SVM parameters determined during the training were the type of

kernel, the cost and sigma parameters. Therefore, linear and radial basis
kernels were selected for the training. The algorithm was tuned to 15
cost values between 0.25 and 4096 on a log scale while the sigma va-
lues were empirically determined using a formula in the R statistical
software package (Meyer et al., 2015). The SVM models with the
combination of the cost and sigma values that yields best-performing
models were selected as the final models. The optimum values of cost
and sigma values were found to be 16 and 0.03 for the PM10 model and
8 and 0.03 for the PM2.5 model respectively. The performance of the ML
methods during parameter selection is shown in Table 3. The results
show that BRT and SVM models for PM10 predictions performed slightly
better than the ANN models as indicated by the smaller RMSE values
(7.99 and 7.72).

However, for the PM2.5 prediction models, all the three methods
performed similarly with BRT performing slightly better than the ANN
and SVM.

3.3. Test performance of the ML models in predicting PM10 and PM2.5

concentrations

The ANN and BRT models performed similarly during testing as
indicated by most of the performance statistics shown in Table 4.
However, the SVM model performed slightly worse than the ANN and
BRT methods. The predictions of the models are much better than what
could be explained by the mean of the observed concentrations mea-
sured by the COE values (> 0). The IOA values ranging between 0.71
and 0.78, show that the predictions have good agreement with the PM10

Table 2
Principal component analysis.

Principal Components
(PCs)

Proportion of Variance
(PM10) %

Important Variables (PM10) Proportion of Variance
(PM2.5) %

Important Variables (PM2.5)

PC1 35.23 Vehicle Emissions (g/km) 77.38 Year and Vehicle Emissions (g/km)
PC2 13.69 Background (NO2/NOx) (μg/m3) 13.21 Background (NO2/NOx) (μg/m3)
PC3 9.92 Background and Roadside (NO2/NOx)

(μg/m3)
7.72 Background and Road (NO2/NOx) (μg/m3)

PC4 6.18 Temperature (0C) 0.63 Year, Vehicle Emissions (Rigid/Articulated/
motorcycles) (g/km)

PC5 4.15 Month of the year 0.32 Temperature (0C)
PC6 4.10 Background SO2 (μg/m3) 0.19 Rainfall (mm)
PC7 3.72 Wind Direction (0N) 0.16 Day of the month
PC8 3.51 Day of the month 0.12 Wind Direction (0N)
PC9 3.34 Rainfall (mm) 0.12 Background SO2 (μg/m3)
PC10 2.87 Year 0.06 Month of the year
PC11 2.38 Hour of the day 0.04 Hour of the day
PC12 2.04 Barometric pressure (mBar) 0.02 Diesel car emission (g/km)
PC13 1.96 Wind speed (m/s) 0.02 Motorcycle emission (g/km)
PC14 1.76 Background PM10 (μg/m3) 0.01 Background PM2.5 (μg/m3)
PC15 1.37 Background CO (μg/m3) 0.00 Wind speed (m/s)
PC16 0.96 Solar Radiation (W/m2) 0.00 Background CO (μg/m3)
PC17 0.86 Relative Humidity (%) 0.00 Relative Humidity (%)
PC18 0.60 Roadside NO2, NOx and CO (μg/m3) 0.00 Background (NO2/SO2) (μg/m3)
PC19 0.45 Background NOx/NO2 and Roadside

NOx and CO (μg/m3)
0.00 Background (NO2/NOx) Roadside (NOx/CO)

(μg/m3)
99.06 100

Table 3
Training performance of the machine learning
models.

Row Labels RMSE (μg/m3)

PM10

ANN 9.08
BRT 7.99
SVM 7.72

PM2.5
ANN 4.53
BRT 4.24
SVM 4.61
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and PM2.5 observations.
Also, about 95% of the model predictions fall within the factor of

two of the observations as indicated by FAC2 values. The bias values of
the SVM models for PM10 predictions are predominantly negative
which signifies under prediction. It also overestimated the PM2.5 con-
centrations at all the sites except at MY1 where it shows under-
estimation. Considering the average R-values (0.79–0.88), the predic-
tions of the models show high correlations with the observations.
Overall, the SVM models show a slightly different behaviour where it
shows relatively poorer performance than the ANN and BRT models in
the predictions of PM10 while it shows similar performance in the case
of PM2.5 predictions. The reason for this behaviour could be that the
SVM overfitted the PM10 data as such it failed to generalise the per-
formance gained during the training.

3.4. Emission estimates for EUROIV/VI scenario

Considering the period between 2011 and 2015, The projected
traffic composition in central London (NAEI, 2014) shows that the
percentage of petrol car was decreasing while the percentages of diesel
car and electric vehicles were on the increase (see Table 5). However,
there were no significant changes in the percentage of the other ve-
hicles between this period. Also the percentage of diesel LGVs was
much higher than that of the petrol LGVs and vice versa in the case of
cars. The projected percentages of Taxi, Bus/Coach, HGVs and Motor-
cycles remained fairly the same between 2011 and 2015. The EUROIV/
VI scenario restrictions were imposed on these traffic projections in
2011 and 2015 for PM10 models and 2012 and 2015 for PM2.5 models.

The variation in the base year was based on data availability.
The PM10 emissions estimated with and without the scenario show

that the emission from diesel cars, LGVs, Taxis, Bus/Coaches and HGVs
has largely reduced due to the implementation of the EUROIV/VI sce-
nario compared to the small reduction by the petrol vehicles (see
Fig. 3). The total PM10 emission reduction due to the scenario in 2011
was 414.7 kg/yr out of which only 4.5 kg/yr was from the petrol ve-
hicles. The PM emission in 2015 was generally lower compared to the
year 2011. Also, In the year 2015, there was no reduction in the PM10

emission of petrol LGV, Rigid HGV and Articulated HGV. This beha-
viour could be attributed to the improvement in vehicle technology and
the likely effect of the existing emission control strategies in London
which might make the scenario to be less effective in 2015. However,
the PM10 emissions from the London Taxi show the highest PM10

emissions reduction of 173.2 kg/yr due to the scenario while PM10

emissions of the diesel LGV and Buses/Coaches were reduced by
39.7 kg/yr and 53.7 kg/yr respectively. Having large reduction from
these vehicles is an indication of the large impact of the scenario if it
were to be implemented in 2015, because they fall into a category of
vehicles with high particle emissions.

Moreover, the scenario in 2012 and 2015 for the PM2.5 emissions
reduction shows the same trend as in the case of PM10 with one im-
portant difference where there was PM2.5 emissions increase of 1.7 kg/
yr in 2012 and 62 kg/yr in 2015 by diesel cars (see Fig. 4). Overall, the
implementation of the scenario resulted in higher reductions in the
emissions of Taxis, diesel LGV and Buses/Coaches.

3.5. Performance of the ML models in predicting the effect of EUROIV/VI
scenario

The models were first used to predict the particle concentrations in
2011 and 2015 without the EUROIV/VI scenario. The ANN and BRT
models predicted that in 2015, without the EUROIV/VI scenario the
annual mean concentrations of PM10 at the sites will be reduced by
0.86μg/m3 – 5.35μg/m3 across the sites (see Fig. 5). Also, they pre-
dicted that the number of days where PM10 was greater than 50μg/m3

will be reduced by 3–26 days across the sites. The sites with higher
traffic volume (MY1, BT4 and GR8) have shown higher reductions than
the remaining sites. In both cases, SVM models predicted much higher
reduction than ANN and BRT models which is not realistic considering
the amount of decrease in the emission rates. The reduction shown by
the ANN and BRT between 2011 and 2015 might be due to the current
implementation of various emission control strategies put in place in
London and the continuous improvement in the vehicle technology due
to strict regulations on particle emissions.

When the scenario was implemented using data collected in 2011,
the models predicted a slight reduction in the annual mean PM10 con-
centrations and the number days where PM10 was greater than 50μg/
m3 as shown in Fig. 6. ANN and BRT models predicted that the annual
mean PM10 concentrations will be reduced by 0.04–8.2 μg/m3 de-
pending on the site. However, at KC2, the ANN model predicted that

Table 4
Test performance of the ML models.

Model Performance
Statistics

Lower –
Upper PM10

Average
for all
sites

Lower –
Upper PM2.5

Average
for all
sites

Pollutant PM10 PM2.5

ANN FAC2 0.84–0.99 0.97 0.93–0.98 0.95
BRT FAC2 0.82–1.00 0.97 0.94–0.99 0.97
SVM FAC2 0.84–0.99 0.95 0.91–0.97 0.95

ANN NMB −0.07–0.11 0.00 0.02–0.12 0.03
BRT NMB −0.03–0.15 0.02 −0.01–0.04 0.02
SVM NMB −0.26–0.04 −0.13 −0.06–0.01 −0.01

ANN R 0.45–0.95 0.81 0.82–0.95 0.87
BRT R 0.43–0.95 0.81 0.83–0.95 0.88
SVM R 0.43–0.95 0.79 0.81–0.95 0.87

ANN COE 0.31–0.71 0.53 0.37–0.70 0.54
BRT COE 0.35–0.73 0.56 0.45–0.68 0.56
SVM COE 0.33–0.70 0.45 0.44–0.70 0.54

ANN RMSE 4.69–19.17 10.12 4.15–6.30 4.80
BRT RMSE 4.48–20.98 10.05 3.47–6.33 4.67
SVM RMSE 4.91–19.17 11.44 3.50–6.74 4.84

ANN NMGE 0.13–0.38 0.20 0.17–0.26 0.20
BRT NMGE 0.14–0.44 0.19 0.16–0.22 0.19
SVM NMGE 0.13–0.37 0.22 0.17–0.24 0.20

ANN IOA 0.58–0.86 0.75 0.69–0.85 0.77
BRT IOA 0.52–0.86 0.75 0.73–0.86 0.78
SVM IOA 0.59–0.85 0.71 0.72–0.85 0.77

Note: Table 4 show that the performance in terms of FAC2, NMB, NMGE, RMSE,
R, COE and IOA values. The first and the second columns display the names of
the models and the performance statistics respectively. The rest of the columns
show the upper, lower and average values of the performance statistics for all
the AQM sites. The third and the fourth represent the statistics for PM10 con-
centrations while the fifth and the sixth columns represent the statistics for
PM2.5 concentrations.

Table 5
Projected traffic composition for central London (NAEI, 2014).

Year Year_2011 Year_2012 Year_2015

Electric car 0.0% 0.0% 0.1%
Petrol car 40.1% 38.5% 34.0%
Diesel car 23.0% 24.6% 29.0%
Taxi (black cab) 12.4% 12.4% 12.4%
Electric LGV 0.0% 0.0% 0.1%
Petrol LGV 0.6% 0.4% 0.3%
Diesel LGV 11.2% 11.4% 11.4%
Rigid HGV 3.1% 3.1% 3.1%
Articulated HGV 0.4% 0.4% 0.4%
Bus and coach 4.2% 4.2% 4.2%
Motorcycle 5.1% 5.1% 5.1%

A. Suleiman et al. Atmospheric Pollution Research 10 (2019) 134–144

140



the annual mean PM10 concentrations would have been increased by
7.3 μg/m3 while BRT model show that the concentrations would in-
crease by 1.2 and 0.6 at CR4 and KC5 sites respectively. The SVM
models predicted a much larger increase in the annual concentrations at
all the sites despite the decrease in the emission rates.

The ANN and SVM predicted an increase in the PM10 concentrations
in 2011 with the implementation of the scenario at KC2 while BRT
predicted a slight reduction. This failure in the case of ANN and SVM
might be attributed to the amount of missing values imputed in the data
used for the training of the models. The data captured at this site in
2011, was 73%, and after the imputation, there were twenty eight days
when PM10 concentrations were higher than 50μg/m3 as against the
seven days in the original data. Also, the 95 and 99 percentiles in-
creased by 10μg/m3 in the imputed data. Therefore, the performance of
the models might be affected as the imputation heavily influenced the
original data.

In the same year the ANN and BRT models predicted various de-
grees of reduction in the number of days where PM10 concentrations
were higher than 50 μg/m3 except at CR4 and KC5 where BRT predicted
increase. Also, at KC2 the ANN model predicted an increase of 12 days.
However, SVM models consistently predicted large increase at the sites.

When the scenario was implemented using 2015 data, the ANN and
BRT predicted that the annual mean PM10 concentrations will be re-
duced by 0.14–2.18 μg/m3 as shown in Fig. 7. They predicted high
reduction at most of the sites except at GR5, KC5 and MY1 where they
predicted less than 0.3 μg/m3 reduction. At the BT4, GR5, and KC5
sites, the two models show approximately the same performance.
Moreover, At CR4 site, the BRT model predicted a decrease of 6 μg/m3
which is unusually high compared with the results of the remaining
models. However, in the case of number of days with PM10 greater than
50μg/m3, BRT and ANN predicted different reductions at most of the

sites except at BT4 and KC2. The SVM models predicted higher increase
all the sites except at CR4 where it predicted reduction of 3 days.

The EUROIV/VI scenario explained above was also applied in pre-
dicting the concentrations of PM2.5 in 2012 and 2015. The ML models
predicted reduction of the annual mean PM2.5 concentrations ranging
between 0.3 μg/m3 at GR9 to 2 μg/m3 at MY1. In most cases, the pre-
dictions of the ANN and SVM were similar while BRT shows slightly
different results. The same trend was also observed when the scenario
was implemented in 2015 where they predicted higher reduction at
MY1 and GR8 as shown in Fig. 8 (middle).

All the models predicted a reduction in the concentrations from
2012 to 2015 (see Fig. 8 right), even though there was an increase in
traffic volume. The reduction might be attributed to the improvement
in the vehicle technology and other air quality control measures being
implemented in London (TFL, 2016).

The ML models are data driven, and they are trained to mimic the
observed data based on the relationships they derive from predictor
variables and the response variables data. Therefore, their performance
will largely depend on the accuracy and completeness of the data. The
models have shown good performance in predicting the particle con-
centrations. Their poor performance, where it occurred, could be
mostly attributed to their inability to capture the extreme events such
as extremely high or low concentrations that are rarely happening in
most of the sites. This behaviour is not unexpected as they have some
element of statistics in their formulation that has a bias towards the
most frequent events. Another reason that will also contribute to their
poor performance is the amount of missing data in the training and
testing data. An attempt has been made to reduce this effect by using
some missing data imputation algorithms. The SVM models show dif-
ferent prediction behaviour compared to the BRT and ANN models
where they predicted increase in the PM10 statistics at most of the sites.

Fig. 3. Estimated annual PM10 emission rates (kg/yr) with and without EUROIV/VI scenario for MY1.

Fig. 4. Estimated annual PM2.5 emission rates (kg/yr) with and without EUROIV/VI scenario for MY1.
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However, they performed similarly in the case of PM2.5. The reason for
this behaviour could not be reliably established, but it was suspected
that the models might have overfitted the training data and subse-
quently failed to generalise the performance.

4. Conclusions

This paper explores the use of machine learning models in air
quality management. The performance of the models in predicting
PM10 and PM2.5 concentrations at twelve monitoring sites in London
was compared. Also, the performance of the models in evaluating the
effect of a hypothetical air quality management scenario on roadside
particle concentrations, PM10 and PM2.5 was compared. The ANN and
BRT performed better than the SVM in predicting PM10 concentrations
while they vary only little in their performance when predicting PM2.5

concentrations.
The ANN method selected traffic emissions from various vehicles as

the most contributing variables followed by the roadside and back-
ground oxides of nitrogen, temperature, wind directions and temporal
variables respectively. The BRT method gave preference to the roadside
and background concentrations of oxides of nitrogen and background
particle concentrations while indicating similar but lower contributions

from the remaining variables. Combining the information gained from
the two methods, the traffic, roadside and background concentrations
of gaseous pollutants could help in determining the levels of roadside
particle concentration. Therefore, it is recommended that relevant en-
vironmental agencies and other stakeholders should maintain more
quality data on these variables so that they can be used in training ML
models to effectively manage the roadside concentrations of PM10 and
PM2.5. Also, oxides of nitrogen were seen to be highly correlated with
the PM10 and PM2.5. Therefore, effective monitoring and control of
these pollutants might help in managing the particle concentrations.

When evaluating the effectiveness of the EUROIV/VI scenario, the
ANN and BRT models predicted reductions in the PM10 and PM2.5

concentrations. While in a few cases, they predicted that the con-
centrations will remain unchanged. The SVM model consistently pre-
dicted higher PM10 concentrations when tested with the scenario while
predicting a much smaller decrease in PM2.5 concentrations. However,
it predicted a much larger decrease in PM10 concentrations in 2015
without the scenario. According to all the performance metrics used in
this study, the SVM model was the poorest in predicting PM10 whereas
it shows similar performance with ANN and BRT in predicting PM2.5.

This behaviour could be attributed to overfitting during SVM training,
however, this study recommends that the application of SVM method in

Fig. 5. The difference between the prediction of the models from 2011 to 2015 without the scenario. The annual mean PM10 concentrations (left) and a number of
days where PM10 is greater than 50μg/m3 (right).

Fig. 6. The difference between the prediction of the models with and without the scenario in 2011. The annual mean PM10 concentrations (left) and the number of
days where PM10 is greater than 50μg/m3 (right).
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air quality management should be further investigated.
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