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Abstract

This work studies the nonlinear dynamics and passive control of chemical os-

cillations governed by a forced modified Van der Pol-Duffing oscillator. We

considered the dynamics of nonlinear chemical systems subjected to fluctuating

hydrodynamic drag forces. The computation of fixed points of the nonlinear

chemical system is made in detail by utilizing Cardan’s method. The harmonic

balance method is used to find the amplitudes of the oscillatory states. The

Floquet theory and the Whittaker method are utilized to analyze and analyti-

cally determine the stability boundaries of oscillations. The influences of system

parameters in general and in particular the effect of the parameter K and the

constraint parameter β which shows the difference between a nonlinear chemi-

cal dynamics order two differential equation and ordinary Van der Pol-Duffing

equation are observed on the state of the second stability criterion. The effects

of the control process on chaotic dynamics states are investigated through bifur-

cations structures, Lyapunov exponent, phase portraits and Poincaré section.

The results obtained by the analytical methods are validated and complemented

by the results of numerical simulations.
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1. Introduction

In several scientific domains ranging from physics, engineering, chemistry,

biochemistry to biology, the study of nonlinear oscillators is of increasing inter-

est in recent years. The chemical oscillating reactions in a continuously stirred

tank reactor (CSTR) is one of the first biochemical oscillations discovered. Con-

siderable theoretical progress on the nature of chemical oscillation, the only

known chemical oscillators were either biological in origin, like the glycolytic

and oxidase-peroxidase systems; discovered accidentally, like the Bray and BZ

reactions; or variants of those reactions [1, 2, 3, 4, 5, 6, 7, 8]. In these chem-

ical oscillations various dynamics behaviors are studied by many researchers.

For instance, nonequilibrium phenomena such as oscillations, bistability, com-

plex oscillations, and quasi-chaotic behavior of the reaction are revealed by

these studies. One of the main challenges has been to predict and to control

these phenomena in nonlinear chemical oscillations for potential applications

(see [1, 2, 3, 4, 5, 6, 7, 8]). In order to understand the biochemistry complex dy-

namics, Duffing-Van der Pol-Rayleigh oscillators have been used and studied by

many researchers [9, 10, 11, 12]. The most interesting nonlinear oscillators are

self-excited, and the study of their dynamics is often difficult. Nowadays, these

oscillators are combined in the modeling of complex systems to better under-

stand the dynamics of these systems [13, 14]. For the control process, passive,

active, semi-active controls are often used depending to the nature of the prob-

lem and system under consideration. An exhaustive review of the description

and most important results of active control are given in Ref. [15, 16, 17, 18, 19].

When it comes to biochemical oscillations such as the case of glycolytic oscil-

lations in yeast, control of oscillations has been achieved through the substrate

injection rate [20, 21]. For instance, the reduction of the injection rate causes a

lengthening of the oscillations period while a decreasing of the injection rate be-
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low a given threshold causes the reversible suppression of oscillations. Here, we

utilize a new approach via passive control [22] which unlike the active control

scheme, do not require the use of, actuators, sensors, computation of control

laws and external power supplies and therefore is cost efficient in the energy

view point. We will also determine the range of control parameters which leads

to a good control.

The organization of this paper is as follows. In Section 2, we give the mathe-

matical modeling of nonlinear chemical oscillations and we formulate the passive

control process. In Section 3, we check the equilibrium points of the autonomous

system and the amplitude of forced oscillatory states. The stability boundaries

is analyzed and the effect of the different parameters of the model under con-

sideration on the amplitude of harmonic resonance are investigated. Section 4

deals with routes to chaotic behavior and effect of the control process on chaotic

dynamics states. The conclusion is presented in the last section.

2. Model and equation of oscillations

In this work, we consider all nonlinear chemical systems as a kinetic example

which can be described by the following equations [1, 3, 8]

A
k1−→ X, (1)

B +X
k2−→ 2X, (2)

D +X
k3−→ products, (3)

X
k4−→ X ′, (4)

B +X ′
k5−→ Y, (5)

Y
k6−→ X ′ + products. (6)

Based upon the laws of mass action and conservation and assuming that

the sink of the product is a first order reaction, the self-oscillations in somes

nonlinear chemical systems can be described by the mathematical model defined

as follows:

dx

dt
= −(x3 − µ0x+ λ)− ky. (7)
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dy

dt
=
x− y
κ

(8)

where µ0 > 0, λ is the constraint parameter, k a second constraint parame-

ter on which feedback values depend, and κ the characteristic evolution time

of the feedback. x and y designate the concentrations of X and Y respec-

tively. Several researchers have already studied the nonlinear chemical systems

modeled by Eq.(8). A variety of nonlinear phenomena such as multistability,

bifurcations and chaotic behavior is observed when the reactive species come

into contact with the catalytic surface. Many researches have proved that these

complex phenomena can be analyzed from the modeling of nonlinear chemical

systems by nonlinear oscillators equations [9, 10, 11, 12]. For example, Van der

Pol oscillator can be used to model a self-excited biological system based on

enzymes-substrates reactions [10]. In the same vein, we seek to reduce the num-

ber of species needed to control the dynamics of chemical reactions governed

by Eq. (8). Thus, differentiating this equation and eliminating y, the system

equation can be transformed after some algebraic manipulations in the following

single second order differential equation [23]:

ζ̈ + µ(1− ζ2)ζ̇ + αζ + γζ3 + β = 0, (9)

where

ζ = ax, a =
√

3κ
1+µ0κ

, µ = µ0κ+1
κ ,

α = k−µ0

k , β = λa
κ , γ = µ0κ+1

3κ2 .

The literature provied that a richness of complex dynamics behaviors can

be obtained when dissipative self-oscillators are submitted to external forcing.

Often, the external force field is used in the simplest periodic forcing form. this

external force field can be seen as exposure of the system to a source of peri-

odic radiation, which affects the production of one of the two species or excites

its reactivity. In this work, the main investigation concerns how this periodic

perturbation can modify the dynamics of the chemical systems. The output

of the reactive system is modified only by applying a simple periodic external
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force. This is technologically important because we don’t need to fabricate so-

phisticated catalytic materials or to apply specific experimental conditions [24].

By assuming that the model is subjected to an external sinusoidal excitation

F cos Ωt, Eq. (9) becomes a nonlinear single second order differential equation

on the form

ζ̈ + µ
(
1− ζ2

)
ζ̇ + αζ + γζ3 + β = F cos Ωt. (10)

When the model is also influenced by fluctuating hydrodynamic drag forces

[22], the equation of the system under such a control scheme becomes

ζ̈ + µ(1− ζ2)ζ̇ + αζ + γζ3 + β = F cos Ωt− εK(U − ζ̇)
∣∣∣U − ζ̇

∣∣∣ (11)

where ζ, ζ̇ and ζ̈ are the displacement, velocity and acceleration respectively. µ,

α and γ respectively denote the damping coefficient, linear and cubic nonlinear

restoring parameters. F and Ω are respectively the amplitude and the frequence

of the excitation. U is the fluid speed, K and (U− ζ̇)2 stand for the control gain

coefficient and the fluid speed relative to the velocity respectively. The control

system can then be written as follows:

ζ̈ + µ(1− ζ2)ζ̇ + αζ + γζ3 + β = F cos Ωt− εK(U − ζ̇)2, ε = ±1 (12)

For the particular case where the constraint parameter λ = 0, the constant

therm β = 0 and if ε = 0, Eq.(12) is reduced to the equation of classical Van

der Pol-Duffing oscillator. The passive hydrodynamics drag forces follow the

positive direction of flow velocity in the case where ε = +1 and are opposite of

flow velocity when ε = −1.

3. Harmonic oscillations states

3.1. Equilibrium points of autonomous system

In this part, we determine the equilibrium points of the autonomous non-

linear chemical system under passive control and we analyze their stability. In

this order, we write the equation of autonomous system as follow
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ζ̇ = u (13)

u̇ = −µ(1− ζ2)u− αζ − γζ3 − β − εK(U − u)2. (14)

All equilibrium points of the autonomous system verify:

u = 0, γζ3 + αζ + β + εKU2 = 0. (15)

Using the Cardan method [25] to solve Eq.(15), we rewrite this equation in the

form:

ζ3 + pζ + q = 0, (16)

where p = α
γ and q = β+εKU2

γ . The associate characteristic equation is

T 2 + qT − p3

27
= 0 (17)

The equilibrium points of system depend on the parameters of the system and

therefore the sign of D with

D = 27∆′ = 4p3 + 27q2, (18)

where ∆′ represents the determinant of Eq. (17). The value of α seriously

influences the sign of D because the parameter γ > 0 for the chemical system

modeled by Eq. (12).

Thus, if α > 0 the parameter D > 0 and the system has one fixed point

that is an unstable focus regardless of the values of the other parameters.

For example, when α = 0.5; γ = 0.05; µ = 0.04; β = 0.05; ε = 1; K =

0.1; U = 0.3, D = 4037, 5948 > 0 and the equilibrium point is P+
0 (ζ0 =

−0.1178363795, 0). The Eigenvalues of Jacobian matrix of the system at P+
0

are λ1 = 0.01027770825− 0.7085034796i; λ2 = 0.01027770825 + 0.7085034796i.

We note that the real part of these complex conjugates eigen values is posi-

tive and the equilibrium point P0 is unstable focus. Fig.(1) shows the phase
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space and the times histories of the autonomous system and we note that

the amplitude of chemical oscillations increases with the time and confirm

that the only equilibrium point is unstable focus. For the same values of

the parameters of the system, and ε = −1, D = 4018, 1548 > 0 and the

fixed point is P−0 (ζ0 = −0.08194497441, 0). The two eigenvalues of Jaco-

bian matrix of the system at P−0 are λ1 = −0.04986570043 − 0.7060599541i;

λ2 = −0.04986570043 + 0.7060599541i. We conclude that the fixed point is

stable focus. We plot in Fig.(2) the phase space and its corresponding times

histories. Through these figures, it is noted that the amplitude of chemical os-

cillations decreases in time and confirms that the equilibrium point is a stable

focus.

Now, we consider α < 0 and we analyze the all sign of D. The autonomous

system can present one, two or three equilibrium points (ζn, un). The eigenval-

ues of the corresponding Jacobian matrix at each of the equilibrium points are

determined by solving

λ2 + λa1 + a2 = 0, (19)

with

a1 = µ− µζ2
n − 2εKU ; a2 = α+ 3γζ2

n

• If D > 0, the autonomous system has one equilibrium point P (ζ0, 0) with

ζ0 = (−q
2
− (

q2

4
+
p3

27
)

1
2 )1/3 + (−q

2
+ (

q2

4
+
p3

27
)

1
2 )1/3.

For example when α = −0.3; γ = 0.05; µ = 0.07; β = 0.0647; ε =

−1; K = 0.3 and U = 1.75, D = 7013.535147 > 0 and the fixed point is

(ζ0 = 3.334940789, u0 = 0). The eigenvalues at this equilibrium point are

λ1 = −0.1707359477− 1.157205144i ; λ2 = −0.1707359477 + 1.157205144i, and

prove that the equilibrium point is the stable focus and confirmed by the phase

space and its corresponding times histories plotted in Fig.(3).

• If D < 0 and α < 0, we have three equilibrium points given by

ζn = 2

√
−p

3
cos[

1

3
arccos(−q

2

√
−27

p3
) +

2nπ

3
], (20)
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ζ̇n = 0, n = 1, 2, 3, (21)

1. When a2
1 − 4a2 > 0, we have two real values

λ1 = −a1

2
− 1

2

√
a2

1 − 4a2, λ2 = −a1

2
+

1

2

√
a2

1 − 4a2

(a) If a1 > 0, a1 >
√
a2

1 − 4a2, the each eigenvalue is negative and the

fixed point is stable node.

(b) If a1 < 0, a1 < −
√
a2

1 − 4a2, the eigenvalues are positives and the

fixed point is unstable node

(c) When a1 > 0, a1 <
√
a2

1 − 4a2, the two eigenvalues have opposite

signs and the equilibrium point is saddle node.

2. If a2
1− 4a2 < 0, the two eigenvalues are complex conjugates and given by:

λ1 = −a1

2
− i1

2

√
−a2

1 + 4a2, λ2 = −a1

2
+ i

1

2

√
−a2

1 + 4a2.

Thus, the equilibrium point is a stable focus if a1 > 0, unstable focus if

a1 < 0 and a center when a1 = 0.

3. If a2
1 = 4a2 we have λ1 = λ2 = −a12 . The equilibrium point is stable when

a1 > 0 and unstable when a1 < 0.

In order to verify our analytical predictions, we consider for example α =

−0.3; γ = 0.05; µ = 0.07; β = 0.0647; ε = −1; K = 0.3; U = 0.50. For

these parameters, D = −862.854228 < 0 and the three equilibrium points

are P1(ζ1 = −2.432139161, ζ̇1 = 0), P2(ζ2 = −0.03434008254, ζ̇2 = 0) and

P3(ζ3 = 2.466479244, ζ̇3 = 0). For the fixed point P1, a1 = −0.04407106289 and

a2 = 0.5872951348, the eigenvalues are λ1 = 0.022035533145 − 0.7660349667i;

λ2 = 0.022035533145 + 0.7660349667i and P1 is unstable focus. For P2, a1 =

0.3699174531 and a2 = −0.2998231138, the two eigenvalues are λ1 = −0.7629144725

; λ2 = 0.3929970194 and P2 is the saddle node. For P3, a1 = −0.05584639028
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and a2 = 0.6125279792, λ1 = 0.02792319514−0.7821433847i; λ1 = 0.02792319514+

0.7821433847i and the equilibrium point is unstable focus (Fig.(4)).

• If D = 0, our autonomous system has two equilibrium points; one is simple

and other is degenerate. The simple equilibrium point is (ζ1 = 3q
p , u1 = 0) and

the degenerate equilibrium point is (ζ2 = ζ3 = − 3q
2p , u2 = u3 = 0). To illustrate

this analytical result, we take α = −0.3; γ = 0.05; µ = 0.07; β = 0.0647;

ε = −1; K = 0.3475427125; U = 1 and we have D = 0; the simple fixed

point is (ζ1 = 2.828427125, u1 = 0) and the degenerate fixed point is (ζ2 =

−1.414213563, u2 = 0). For the simple equilibrium point, a1 = 0.2050854249

and a2 = 0.9000000002, the eigenvalues are λ1 = −0.1025427125−0.9431251201i

; λ2 = −0.1025427125 + 0.9431251201i, and this equilibrium point is stable.

For the degenerate point, a1 = 0.6250854249 and a2 = 2.6595 ∗ 10−10, the

two eigenvalues are λ1 = −0.6250854245 ; λ2 = −4.089096 ∗ 10−10, thus this

equilibrium point is a stable node.

3.2. Amplitude of forced oscillatory states

When the fundamental component of the solution and the external excitation

have the same period, the amplitude of harmonic oscillations can be determined

using the harmonic balance method [26, 27]. For this purpose, we express its

solutions in the following form

ζ = A cos(Ωt+ φ) +A0 (22)

where A and A0 are the amplitudes of oscillations. We introduce the solution

Eq.(22) in Eq.(12) and equate the constants and the coefficients of sin Ωt and

cos Ωt. By hypothesizing that |A0| � |A|, i.e that shift in ζ = 0 is small com-

pared to the amplitude, then A2
0 and A3

0 terms can be neglected, we determine

that the amplitude of harmonic oscillatory states under the control process sat-

isfies the following set of algebraic equations:

A0 = −2β + 2εKU2 + εKA2Ω2

2α+ 3γA2
, (23)

[(α− Ω2)A+
3

4
γA3]2 + [(2εKUΩ− µΩ)A+

1

4
µA3Ω]2 − F 2 = 0. (24)
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Figure 1: Time histories (a) and phase portrait (b) of instable autonomous oscillations for

α = 0.5; γ = 0.05; K = 0.1; U = 0.3; µ = 0.04 ; β = 0.05 and ε = 1.

We solved Eq. (24) using the Newton-Raphson algorithm. A good agreement

is obtained for comparison between the analytical frequency response curve

obtained via Eq. (24) and the one provided by numerical computation of Eq.

(12) (see Fig. 5). We investigated the effects of the passive control on the

resonance state, process of hysteresis and amplitude jump, the cancellation of

these phenomena has been successfully achieved. Fig. 6 illustrate the effect

of the parameter ε on the amplitude of harmonic oscillation. Through this

figure, it is noted that the amplitude of harmonic resonance is reduced for
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Figure 2: Time histories (a) and phase portrait (b) of stable autonomous oscillations for

α = 0.5; γ = 0.05; K = 0.1; U = 0.3; µ = 0.04 ; β = 0.05 and ε = −1.

the two hydrodynamic force directions when the external excitation F ≤ 0.2

(see Fig. 6 (a)) but it is the largest for ε = −1 when F > 0.2 (see Fig.

6 (b)). It is also noticed that the amplitude of resonance increases with F

and the unstable amplitude disappears with it (see Fig. 7). We plot in Fig.

8 the effect of the cubic and restoring force and one can observe that as it

increases, the harmonic resonance amplitude decreases and the model goes from

resonance to a hysteresis state. The effect of damping parameter µ on harmonic

resonant state is presented in Fig. 9. Our investigation shows that the harmonic
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Figure 3: Time histories (a) and phase portrait (b) of the system for α = −0.3; γ = 0.05;

K = 0.3; U = 1.75; µ = 0.07 ; β = 0.0647 and ε = −1.
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Figure 4: Time histories (a) and phase portrait (b) of the system for α = −0.3; γ = 0.05;

K = 0.3; U = 0.5; µ = 0.07 ; β = 0.0647 and ε = −1.
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resonance amplitude and instability domain increase with µ ranging in [0, 0.2]

while the harmonic resonance amplitude decrases and resonance state disappears

when the parameter µ decreases remaining greater than 0.2. Fig. 10 shows the

effect of control parameter on amplitude-response curves. It is noticed that

the hysteresis phenomenon disappears when the passive control force increases.

Fig. 10 shows the evolution of the amplitude of harmonic oscillations when the

passive control parameters varied. It can be observed that the amplitude of

harmonic oscillations decreases when the passive control parameters K and U

increase. We can conclude that our passive control is convenient because the

amplitude of nonlinear chemical oscillations is considerably reduced when the

appropriate control parameters varied.

3.3. Stability boundaries analysis

To analyze the stability of harmonic oscillations in nonlinear chemical dy-

namics, we used the following linear variational equation derived from Eq.(12):

η̈ + [µ(1− ζ2) + 2εK(ζ̇ − U)]η̇ + (α− 2µζζ̇ + 3γζ2)η = 0 (25)

where η stands for the perturbation variable. The oscillatory states are stable

if η decreases in time. We use the Floquet Theory [26, 27, 22, 14] recognized as

a convenient analytical tool to study the stability of oscillations of the system.

By setting τ = Ωt+φ
2 and using the solution ζ(t), we rewrite Eq. (25) as follows:

η̈ + [2L+M(τ)]η̇ +N(τ)η = 0, (26)

where

L =
1

Ω
[µ(1− A2

2
)− 2εKU ], (27)

M(τ) = Λ1 sin 2τ + Λ2 cos 2τ + Λ3 cos 4τ,

N(τ) = Γ0 + Γ1 sin 2τ + Γ2 cos 2τ + Γ3 sin 4τ + Γ4 cos 4τ,
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with

Λ1 = −4εKA, Λ2 = −4µAA0

Ω
, Λ3 = −µA

2

Ω

Γ0 = 4
Ω2 [α+ 3

2γA
2], Γ1 = 8µAA0

Ω ,

Γ2 = 24γAA0

Ω2 , Γ3 = 4µA2

Ω , Γ4 = 6γA2

Ω2 .

To deepen our discussion of the stability boundaries of the control process, we

make use of the following transformation

η = υ exp(−Lτ) exp{−1

2

∫ τ

0

M(τ ′)dτ ′} (28)

to bring back Eq.(26) to the following Hill equation [26, 27, 22, 14]

ϋ + [b0 + 2b1s sin 2τ + 2b1c cos 2τ + 2b2s sin 4τ+

2b2c cos 4τ + 2b3s sin 6τ + 2b3c cos 6τ + 2b4c cos 8τ ]υ = 0, (29)

where

b0 = Γ0 − L2 − 1
8 (Λ2

1 + Λ2
2 + Λ2

3),

b1s = 1
2 [Γ1 + Λ2 − (L− 1

4Λ3)Λ1],

b1c = 1
2 [Γ2 − Λ1 − (L+ 1

4Λ3)Λ2],

b2s = Λ3 − 1
8Λ1Λ2 + 1

2Γ3,

b2c = 1
2 [Γ4 − LΛ3 + 1

8 (Λ2
1 − Λ2

2)],

b3s = −Λ1Λ3

8 , b3c = −Λ2Λ3

8 ,

b4c = −Λ2
3

16
.

The application of the Floquet Theory [26, 27, 22, 14] to Eq.(29) leads to

a solution that may be either stable or unstable. We have used the Whittaker
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method [27] to discuss unstable solutions. Eq. (29) shows that the stability

boundaries of the control process are to be investigated around four main para-

metric resonances defined at b0 = n2 (with n = 1,2,3,4). So, the solution of

Eq.(29) at the nth unstable region may be approximed by the following expres-

sion:

η = exp(ρτ) sin(nτ − ϕ), (30)

where ρ is the characteristic exponent and ϕ a constant. We obtain the following

expression for the characteristic exponent by introducing Eq.(30) into Eq.(29)

and equating the coeffficients of sinnτ and cosnτ separately to zero:

ρ2 = −(b0 + n2) +
√

4n2b0 + b2n, (31)

with b2n = b2ns + b2nc. From the transformation (28), we note that the stability

of the control process is realized when η(τ) goes to zero in time so that the

real part of L ± ρ should be negative. Since L must be real and positive, the

amplitude of oscillations must satisfy the following condition:

µ(1− A2

2
)− 2εKU > 0. (32)

Moreover, the stability of the system oscillations process is guaranteed if the

following criterion is satisfied:

Qn = (b0 − n2)2 + 2(b0 + n2)L2 + L4 − b2n > 0, n = 1, 2, 3, 4. (33)

n = 1, 2, 3, 4 represent the first, second, third and fourth parametric resonant

states respectively. The fulfillment of the criteria (32) and (33) is essential to

ensure the stability of the system oscillations. From the criterion (33) four

parametric resonances are plotted as a function of the control parameter U .

However the stability of the system will be obtained when criterion (32) will

be satisfied. The effect of the parameters of the system on state of the second

stability criterion for the four parametric resonances for A = 0.56 is observed

in Figs. 12, 13, 14, 15, 16. It should be noted that whatever the conditions, the

stability criteria are always satisfied for n = 2, 3, 4 but for n = 1 the instability
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domain appears and is influenced by certain parameters of the system. Fig.

12 presents the effects of linear restoring parameter α on the second stability

domain and it can be observed that the instability domain increases with α

for ε = 1. In Fig. 13, we investigate the effect of the damping parameter µ

for α = −0.5, ε = 1 and it is noticed that the stability increases with damping

parameter µ. On the other hand, domains of U for which Qn < 0(n = 1)

lead to the occurrence of unstable oscillations are shown in Fig. 14 for the

first parametric resonance. The influences of the parameters K and β on the

stability of harmonic oscillation are addressed and results are shown in Figs. 15,

16, respectively. From Fig. 15 it is noticed that the stability domain decrases

with the control parameter K and we can conclude that the control process is

more stable for the low values of K. Through Fig. 16, one can notice that

the constraint parameter β increases and deplaces the stability domain. We

can conclude that the stability of harmonic oscillations is more achieved in the

negative flow speed direction (ε = −1) than the positive flow speed direction

(ε = 1).

4. Control of Chaotic dynamics states

The nonlinear chemical oscillations under consideration in this paper present

the chaotic states which are often caused by instabilities. Our objective in this

work is to suppress these undesirable phenomena by using the hydrodynamic

control process. To achieve this goal, we use the fourth-order Runge Kutta

algorithm to solve numerically Eq.(12) and the resulting bifurcation diagrams

and its corresponding Lyapunov exponent are plotted when the amplitude of

the fluctuating hydrodynamic drag forces F is varied. The bifurcation diagram

and its corresponding Lyapunov exponent are obtained ( see Fig. 17) in the ab-

sence of the control force (ε = 0) and with the following parameters µ = 0.0001,

α = −0.5, γ = 0.05, β = 0.05 and Ω = 1. Now, we have always observed the

presence of chaos in the system for ε = 1 but the control process has reduced it

(see Fig. 18) when the system is subjected to the action of hydrodynamic drag
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forces. We obtained the total disappearance of chaos when ε = −1 (see Figs. 19,

20). By representing the phase portraits and its corresponding Poincaré sectin

of the system at two different stages of the process for negative flow direction,

we checked the efficiency of the passive control applied to the nonlinear chem-

ical model. Thus, the phase portraits and its corresponding Poincaré section

plotted in Figs. 21, 22 for appropriate choice of F and control parameters K

and U confirmed the predictions of bifurcation diagrams and its corresponding

Lyapunov.

5. Conclusion

In this paper, we have studied the nonlinear dynamics and passive hydro-

dynamics control of chemical oscillations modeled by a forced modified Van der

Pol-Duffing oscillator. The model has been described and the corresponding

equation of motion obtained. By using the Cardan method, we have determined

the equilibrium points of autonomous system. The dynamical behaviors of sys-

tem is qualitatively determined by evaluating the eigenvalues of corresponding

Jacobian matrix at each of the equilibrium points. The second stability crite-

ria is checked by using Floquet theory and Whittaker method. The numerical

simulations are used to validated and complemented the results obtained by

the analytical methods. We noted a more robust stability of oscillations in the

negative flow speed direction than in the positive one. In both directions, the

existence of instability zones is observed. We noticed also the increase or de-

crease of this instability area when certain parameters of the system increases

or decrases. The effect of the control process on chaotic dynamic states has

been effective with ε = −1. The hysteresis phenomenon, jump amplitude of the

harmonic oscillations and chaotic states have been successfully controlled by the

passive hydrodynamic control sued in this work.

18



Acknowlegments
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Figure 5: Comparaison between analytical and numerical frequency-response curve A(Ω) in

the case (a) ε = 1;K = 0.05; U = 0.05 (b) ε = −1; K = 1; U = 0.05 with the parameters

α = 0.5; γ = 0.5; β = 0; µ = 0.04 and F = 0.02.
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Figure 6: Effect of the control parameter ε on frequency-response curve in the case (a) F = 0.05

(b) F = 0.4 with the parameters α = 0.5; γ = 0.05; K = 1; U = 0.05 and µ = 0.04.
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Figure 7: Effect of amplitude of external focing F on frequency-response curve with the

parameters ε = 1; α = 0.5; γ = 0.05; K = 1; U = 0.05 and µ = 0.04.
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Figure 8: Effect of the parameter γ on frequency-response curve with the parameters ε = 1;

α = 0.5; K = 1; U = 0.05 and µ = 0.04 and F = 0.05.
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Figure 9: Effect of the parameter µ on frequency-response curve in the case (a) µ ≤ 0.2, (b)

µ ≥ 0.3 with the parameters ε = 1; α = 0.5; γ = 0.05;K = 1; U = 0.05 and F = 0.05.
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Figure 10: Effects of the control parameter U on the amplitude-response curve displaying

jump in amplitude with the parameters α = 0.5; γ = 0.05; K = 1; µ = 0.04 and Ω = 1.
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Figure 11: Effects of the coefficient U on the amplitude-response A(K) with the parameters

α = 0.5 ; γ = 0.05 ; µ = 0.04 ; Ω = 1 ;ε = 1 and F = 1.
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Figure 12: Effect of the parameter α on state of the second stability criterion for all the four

parametric resonances for A = 0.56 and with the parameters: µ = 0.04, γ = 0.05, β = 0.05,

K = 0.05 and ε = 1;(a) α = −0.5; (b) α = 0.5; (c) α = 0.60; (d) α = 1.
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Figure 13: Effect of the parameter µ on state of the second stability criterion for all the four

parametric resonances for A = 0.56 and with the parameters:γ = 0.05, β = 0.05, K = 0.05;

α = −0.5 and ε = 1;(a) µ = 0.0001; (b) µ = 0.01; (c) µ = 0.04.
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Figure 14: State of the second stability criterion for the first parametric resonance for A = 0.56

and with the parameters: µ = 0.0001, α = −0.5, K = 0.05, β = 0.05; γ = 0.05 and ε = −1.
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Figure 15: Effect of the parameter K on state of the second stability criterion for all the four

parametric resonances for A = 0.56 and with the parameters: µ = 0.0001, α = −0.5, γ = 0.05,

β = 0.05 and ε = −1;(a) K = 0.02; (b) K = 0.05; (c) K = 1; (d) K = 2.
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Figure 16: Effect of the parameter β on state of the second stability criterion for all the four

parametric resonances for A = 0.56 and with the parameters: µ = 0.0001, α = −0.5, γ = 0.05,

K = 0.05 and ε = −1; (a) β = 0; (b) β = 0.05; (c) β = 3.5; (d) β = 15.
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Figure 17: (a) Bifurcation diagram and (b) corresponding Lyapunov exponent for µ = 0.0001,

α = −0.5, γ = 0.05, β = 0.05; Ω = 1 and ε = 0.
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Figure 18: (a) Bifurcation diagram and (b) corresponding Lyapunov exponent for ε = 1,

K = 0.05, U = 0.05 and the parameters µ = 0.0001, α = −0.5, γ = 0.05, β = 0.05; Ω = 1.
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Figure 19: (a) Bifurcation diagram and (b) corresponding Lyapunov exponent for ε = −1,

K = 0.05, U = 3.1 and the parameters µ = 0.0001, α = −0.5, γ = 0.05, β = 0.05; Ω = 1.
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Figure 20: (a) Bifurcation diagram and (b) corresponding Lyapunov exponent for ε = −1,

K = 0.05, U = 8.5 and the parameters µ = 0.0001, α = −0.5, γ = 0.05, β = 0.05; Ω = 1.
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Figure 21: Chaotic phase portraits (left) and its corresponding Poincaré section (right) for

the parameters µ = 0.0001, α = −0.5, γ = 0.05, β = 0.05; Ω = 1;F = 28.80 ; (a),(b) ε = 0

and(c), (d) effet of the control on chaos for ε = −1, K = 0.05, U = 3.1.
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Figure 22: Chaotic phase portraits (left) and its corresponding Poincaré section (right) for the

parameters µ = 0.0001, α = −0.5, γ = 0.05, β = 0.05; Ω = 1;F = 6 ; (a),(b) ε = 0 and(c),(d)

effet of the control on chaos for ε = −1, K = 0.05, U = 8.5.
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