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Abstract. This paper presents conditions to assure existence, uniqueness and stability for impulsive
neutral stochastic integrodifferential equations with delay driven by Rosenblatt process and Poisson
jumps. The Banach fixed point theorem and the theory of resolvent operator developed by Grimmer
[R.C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Am. Math.
Soc., 273(1):333–349, 1982] are used. An example illustrates the potential benefits of these results.
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1 Introduction

Stochastic differential equations (SDEs) arise in many areas of science and engineering,
wherein, quite often the future state of such systems depends not only on present state, but
also on its history leading to stochastic functional differential equations with delays rather
than SDEs. However, many stochastic dynamical systems depend not only on present and
past states, but also contain the derivatives with delays. Neutral stochastic differential
equations with delays are often used to describe such systems (see, e.g., [19, 30]). On the
other hand, the stability of impulsive differential equations has been discussed by several
authors (see, e.g., [2, 10, 26, 32, 33, 38]).

Stochastic integrodifferential equations with delay are important for investigating sev-
eral problems raised from natural phenomena. As far as applications are concerned,
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stochastic evolution equations have been motivated by such phenomena as wave prop-
agation in random media [16] and turbulence [12]. Important motivations came also
from biological sciences, in particular from population biology; see Dawson [27] and
Fleming [7]. One has finally to mention early control theoretic application of Wang [8],
Kushner [11], Bensoussan and Viot [36]. In addition, the study of neutral stochastic
functional differential equations (SFDEs) driven by jumps process also have begin to
gain attention and strong growth in recent years (see [15, 21, 31] and references therein).

Regarding the fractional Brownian motion (fBm), one can find results involving exis-
tence, uniqueness and stability of solutions for stochastic functional differential equations;
see [3–6, 20, 22–24, 28, 34]. LetH be a separable Hilbert space.

In this work, we shall prove the existence, uniqueness and asymptotic behavior of mild
solution for a class of impulsive stochastic neutral functional integrodifferential equation
with delays driven by Rosenblatt process and Poisson jumps described in the form:
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(1)

where A, which is the infinitesimal generator of a strongly continuous semigroup
(S(t))t>0 on a Hilbert space H with domain D(A), (Θ(t))t>0, is a closed linear operator
on H with domain D(Θ(t)) ⊃ D(A), Λ ∈ Bσ(H−{0}) (Bσ(H−{0}) is the Borel trace
σ-algebra onH− {0}) is a Borel set, and Ñ will be defined later.

Let DF0
= DF0

([−τ, 0],H) be the space of càdlàg F0-measurable functions almost
surely bounded from [−τ, 0] × Ω into H, equipped with the supremum norm ‖ζ‖D =
sup−τ6θ60 ‖ζ(θ)‖H, and ζ has finite second moment. ZH is a Rosenblatt process on
a real and separable Hilbert space K0. r, ρ, k : [0,∞) → [0, τ ] (τ > 0) are con-
tinuous functions, and G,F : [0,+∞) × H → H, G : [0,+∞) → L0

2(K,H), σ :
[0,+∞)×H×Λ→ H are appropriate functions. Here L0

2(K,H) denotes the space of all
Q-Hilbert–Schmidt operators from K into H. Moreover, the fixed moments of time tk
satisfy 0 < t1 < t2 < · · · < tk < · · · , and limk→∞ tk = ∞, x(t−k ) and x(t+k ) represent
the left and right limits of u(s) at time tk with Ik(·) : H→ H determining the size of the
jump.

The analysis of (1) when B ≡ 0 was initiated in Ouahra et al. [28], where the authors
proved the existence and stability of solutions by using a strict contraction principle. The
main contribution is towards this direction by presenting conditions to assure existence,
uniqueness and stability for such a class of system with the integrodifferential term. Our
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paper expands the usefulness of stochastic integrodifferential equations since the literature
shows results for existence and exponential stability for such equations under semigroup
theory.

The remaining of the paper is organized as follows. Section 2 presents notation and
preliminary results. Section 3 shows the main results for existence, uniqueness of mild
solutions for impulsive neutral stochastic integrodifferential equations driven by Rosen-
blatt process and Poisson processes and conditions for the exponential stability in mean
square. Finally, Section 4 presents an example that illustrates our results.

2 Preliminaries

In this section, we provide some basic results about Poisson process, resolvent operator
and Rosenblatt process.

2.1 Poisson jumps process

We denote by Bσ(H) the Borel σ-algebra of H. Let (p(t))t>0 be an H-valued, σ-finite
stationary Ft-adapted Poisson point process on (Ω,F , {Ft}t>0,P). The counting ran-
dom measure N defined by

N
(
(t1, t2]× Λ

)
(w) :=

∑
t1<s6t2

1Λ
(
p(s)(w)

)
for any Λ ∈ Bσ(H − {0}); where 0 /∈ Λ̄ (the closure of Λ) is called the Poisson random
measure associated to the Poisson point process p. The following notation is used:

N(t, Λ) = N
(
(0, t]× Λ

)
.

Then it is known that there exists a σ-finite measure ν such that

E
(
N(t, Λ)

)
= ν(Λ)t, P

(
N(t, Λ) = k

)
=

exp(−tν(Λ))(tν(Λ))k

k!
.

This measure ν is said the Lévy measure. Then the measure Ñ is defined by

Ñ
(
(0, t]× Λ

)
= N

(
(0, t]× Λ

)
− tν(Λ).

This measure Ñ(dt, dy) is called the compensated Poisson random measure, and dtν(Λ)
is called the compensator (see [18]).

Definition 1. Let Λ ∈ Bσ(H − {0}). P2([0, T ] × Λ;H) is the space of all predictable
mappings h : [0, T ]× Λ×Ω → H for which

T∫
0

∫
Λ

E
∥∥h(t, ν)

∥∥2
dt λ(dν) <∞.

We may then define the H-valued stochastic integral
∫ T

0

∫
Λ
L(t, ν)Ñ(dt, dν), which

is a centered square-integrable martingale [25].
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2.2 Deterministic integrodifferential equations

In this subsection, we recall some knowledge on partial integrodifferential equations and
the related resolvent operators. Let H and Y be two Banach spaces such that

‖y‖Y = ‖Ay‖+ ‖y‖, y ∈ Y.

A and Θ(t) are closed linear operator on H. Let C([0,+∞);Y ), B(Y,H) stand for the
space of all continuous functions from [0,+∞) into Y , the set of all bounded linear opera-
tors from Y into H, respectively. In what follows, we suppose the following assumptions:

(H1) A represents the infinitesimal generator of a strogly continuous semigroup on H.
(H2) For all t > 0, Θ denotes a closed, continuous linear operator from D(A) to H;

in addition, Θ(t) is a bounded linear operator from (Y, ‖·‖Y ) into (H, ‖·‖H).
For any y ∈ (Y, ‖·‖Y ), the map t → Θ(t)y is bounded, differentiable, and the
derivative dΘ(t)y/dt is bounded and uniformly continuous on [0,+∞[.

By Grimmer [13], under assumptions (H1) and (H2), the following Cauchy problem

L′(t) = AL(t) +

t∫
0

Θ(t− s)L(s) ds, t > 0,

L(0) = l0 ∈ H.

(2)

has an associated resolvent operator of bounded linear operator valued function R(t) ∈
L(H) for t > 0.

Definition 2. (See [13].) A resolvent operator for Eq. (2) is a bounded linear operator
valued functionR(t) ∈ L(H), t > 0, satisfying the following properties:

(i) R(0) = I and ‖R(t)‖ 6Mekt for some constants M and k.
(ii) For each x ∈ H,R(t)x is strongly continuous for t > 0.

(iii) For x ∈ Y ,R(·)x ∈ C1([0,+∞[;H) ∩ C([0,+∞[;Y ) and

u(t)R′(t)x = AR(t)x+

t∫
0

Θ(t− s)R(s)xds

= R(t)Ax+

t∫
0

R(t− s)Θ(s)xds, t > 0.

Hereafter, the resolvent operator for (2) is assumed to be continuous and exponentially
stable.

(H3) The resolvent operator R(·) is both norm continuous and exponentially stable
(the exponential stability means that there exist constants M > 0 and k > 1
such that ‖R(t)‖ 6Me−κt for all t > 0).
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2.3 Rosenblatt process

Self-similar processes are invariant in distribution under suitable scaling. They are of
considerable interest in practice since aspects of the self-similarity appear in different
phenomena like telecommunications, turbulence, hydrology or economics (see, e.g., [14,
17, 24, 37]).

A self-similar processes can be defined as limits that appear in the so-called noncentral
limit theorem (see [34]). We briefly recall the Rosenblatt process as well the Wiener
integral with respect to it.

Let us recall the notion of Hermite rank. Denote by Hj(x) the Hermite polynomial
of degree j given by Hj(x) = (−1)jex

2/2(dj/dxj)e−x
2/2, and let g be a function on R

such that E[g(ζ0)] = 0 and E[(g(ζ0))2] <∞. Assume that g has the following expansion
in Hermite polynomials

g(x) =
∑
j>0

cjHj(x),

where cj = E[g(ζ0Hj(ζ))]/j!. The Hermite rank of g is defined by

k = min{j: cj 6= 0}.

Consider (ζn)n∈Z a stationary Gaussian sequence with mean zero and variance 1,
which exhibits long range dependence in the sense that the correlation function satisfies

r(n) = E(ζ0ζn) = n(2H−2)/kL(n),

with H ∈ (1/2, 1) and L is a slowly varying function at infinity. Since E[g(ζ0)] = 0, we
have k > 1. Then the following family of stochastic processes

1

nH

[nt]∑
j=1

g(ζ)

converges as n → ∞, in the sense of finite dimensional distributions, to the self-similar
stochastic process with stationary increments

ZkH(t) = c(H, k)

×
∫
Rk

( t∫
0

k∏
j=1

(s−yj)−(1/2+(1−H)/k)
+ ds

)
dB(y1) dB(y1) · · · dB(yk), (3)

where x+ = max(x, 0). The above integral is a Wiener-Itô multiple integral of order
k with respect to the standard Brownian motion (B(y))y∈R, and the constant c(H, k) is
a normalizing constant that ensures E(ZkH(1))2 = 1. The process (ZkH(t))t>0 is called the
Hermite process. When k = 1, the process given by (3) is nothing else that the fractional
Brownian motion (fBm) with Hurst parameter H ∈ (1/2, 1). For k = 2, the process is
not Gaussian. If k = 2, then process (3) is known as the Rosenblatt process [34]. The
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Rosenblatt process is of course the most studied process in the class of Hermite processes
due to its significant importance in modelling. The Rosenblatt process is, after fBm, the
most well know Hermite process.

We also recall the following properties of the Rosenblatt process:

• The process ZkH is H-self-similar in the sense that for any c > 0,(
ZkH(ct)

) d
=
(
cHZkH(t)

)
,

where d
= means equivalence of all finite dimensional distributions. It has stationary

increments and all moments are finite.
• From the stationarity of increments and the self-similar, it follows that, for any
p > 1,

E
∥∥ZH(t)− ZH(s)

∥∥p
K0

6
∥∥E(ZH(1)

)∥∥p
K0
|t− s|pH .

As a convergence, the Rosenblatt process has Hölder continuous paths of order γ
with 0 < γ < H .

Self-similarity and long-range dependence make this process a useful driving noise in
models arising in physics, telecommunication networks, finance and other fields.

Consider a time interval [0, T ] with arbitrary fixed horizon T and let {ZH(t), t ∈
[0, T ]} the on-dimensional Rosenblatt process with parameter H ∈ (1/2, 1). By Tu-
dor [35], it is well known that ZH has the following integral representation:

ZH(t) = d(H)

t∫
0

t∫
0

[ t∫
y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2) du

]
dB(y1) dB(y2), (4)

whereB={B(t): t ∈ [0, T ]} is a Wiener process,H ′ = (H+1)/2, d(H) = (1/(H+1))×√
H/(2(2H − 1)) is a normalizing constant, and KH(t, s) is a Kernel given by

KH(t, s) = cHs
1/2−H

t∫
s

(u− s)H−3/2uH−3/2du

for t > s, where cH =
√
H(2H − 1)/(β(2− 2H,H − 1/2)), and β(·, ·) denotes the

beta function. We put KH(t, s) = 0 if t 6 s.
The basic observation is the fact that the covariance structure of the Rosenblatt process

is similar to the one of the Rosenblatt process, and this allows the use of the same classes
of deterministic integrands as in the Rosenblatt process. By formula (4) we can write

ZH(t) =

t∫
0

t∫
0

I(1[0,t])(y1, y2) dB(y1) dB(y2),
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where I denote the mapping on the set of functions f : [0, T ]→ R to the set of functions
f : [0, T ]2 → R such that

I(f)(y1, y2) = d(H)

T∫
y1∨y2

f(u)
∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2) du.

Let us denote by ξ the class of elementary functions on R of the form

f(·) =

n∑
j=1

aj1(tj ,tj+1](·), 0 6 tj < tj+1 6 T, aj ∈ R, j = 1, . . . , n.

For f ∈ ξ as above, it is natural to define its Wiener integral with respect to the Rosenblatt
process ZH by

T∫
0

f(s) dZΓ (s) :=

n∑
j=1

aj
[
ZH(tj+1)− ZH(tj)

]

=

T∫
0

T∫
0

I(f)(y1, y2) dB(y1) dB(y2).

Let K be the set of functions f such that

K =

{
f : [0, T ]→ R: ‖f‖K :=

T∫
0

T∫
0

(
I(f)(y1, y2)

)
dB(y1) dB(y2) <∞

}
.

It holds that

‖f‖K = H(2H − 1)

T∫
0

T∫
0

f(u)f(v)|u− v|2H−2dudv,

and the mapping

f →
T∫

0

f(u) dZH(u) (5)

provides an isometry from ξ to L2(Ω). On the other hand, it has been proved in [29] that
the set of elementary functions ξ is dense in K. As a consequence, mapping (5) can be
extended to an isometry from K to L2(Ω). We call this extension as the Wiener integral
of f ∈ K with respect to ZH .

Let us consider the operator K∗H from ξ to L2([0, T ]) defined by

(K∗Hϕ)(y1, y2) =

T∫
y1∨y2

ϕ(r)
∂KH′

∂r
(r, y1, y2) dr,
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where K(·, ·, ·) is the kernel of Rosenblatt process in representation (4)

K(t, y1, y2) = 1[0,t](y1)1[0,t](y2)

t∫
y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2) du.

We refer to [35] for the proof of the fact thatK∗H is an isometry betweenK andΛ2([0, T ]).
It follows from [35] that K contains not only functions, but its elements could be also
distributions. In order to obtain a space of functions contained in K, we consider the
linear space |K| generated by the measurable functions ψ such that

‖ψ‖2|K| := αH

T∫
0

T∫
0

∥∥ψ(s)
∥∥
K

∥∥ψ(t)
∥∥
K|s− t|

2H−2 dsdt <∞,

where αH = H(2H − 1). The space |K| is a Banach space with the norm ‖ψ‖|K|, and
we have the following inclusions (see [35]).

Lemma 1.
L2
(
[0, T ]

)
⊆ L1/H

(
[0, T ]

)
⊆ |K| ⊆ K,

and for any ψ ∈ L2([0, T ]), we have

‖ψ‖2|K| 6 2HT 2H−1

T∫
0

∥∥ψ(s)
∥∥2

K ds.

Let H and K be two real, separable Hilbert spaces, and let L(K,H) be the space of
bounded linear operator from K to H. For the sake of convenience, we shall use the same
notation to denote the norms in H, K and L(K,H). Let Q ∈ L(K,H) be an operator
defined by Qen = λnen with finite trace trQ =

∑∞
n=1 λn < ∞, where λn > 0

(n = 1, 2 . . . ) are nonnegative real numbers, and {en} (n = 1, 2, . . . ) is a complete
orthonormal basis of K. We define the infinite dimensional Q-Rosenblatt process on K as

ZH(t) = ZQ(t) =

∞∑
n=1

√
λnenzn(t), (6)

where (zn)n>0 is a family of real independent Rosenblatt process. Note that series (6) is
convergent in L2(Ω) for every t ∈ [0, T ] since

E
∥∥ZQ(t)

∥∥2

K =

∞∑
n=1

λn
(
E
(
zn(t)

))2
= t2H

∞∑
n=1

λn <∞.

Note also that ZQ has covariance function in the sense that

E
〈
ZQ(t), x

〉〈
ZQ(s), y

〉
= R(s, t)

〈
Q(x), y

〉
, x, y ∈ K, t, s ∈ [0, T ].
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In order to define Wiener integrals with respect to the Q-Rosenblatt process, we
introduce the space L0

2 := L0
2(K,H) of all Q-Hilbert–Schmidt operators ψ : K → H.

We recall that ψ ∈ L(K,H) is called a Q-Hilbert–Schmidt operator if

‖ψ‖L0
2

:=

∞∑
n=1

‖
√
λnψen‖2 <∞,

and that the space L0
2 equipped with the inner product 〈ϕ,ψ〉L0

2
=
∑∞
n=1〈ϕen, ψen〉 is

a separable Hilbert space.
Now, let φ(s), s ∈ [0, T ], be a function with values in L0

2(K,H) such that∑∞
n=1 ‖K∗φQ1/2en‖2L0

2
<∞. The Wiener integral of φ with respect to ZQ is defined by

t∫
0

φ(s) dZQ(s) =

∞∑
n=1

t∫
0

√
λnφ(s) dzn(s)

=

∞∑
n=1

t∫
0

t∫
0

√
λnK

∗
H(φen)(y1, y2) dB(y1) dB(y2).

Now, we end this subsection by stating the following result, which is useful to prove
the main result.

Lemma 2. If ψ : [0, T ]→ L0
2(K,H) satisfies

∫ T
0
‖ψ(s)‖2L0

2
ds <∞, then the above sum

in (3) is well defined as a H-valued random variable, and we have

E

∥∥∥∥∥
t∫

0

ψ(s) dZH(s)

∥∥∥∥∥
2

H

6 2Ht2H−1

t∫
0

∥∥ψ(s)
∥∥2

L0
2

ds.

Proof. Let {en} (n = 1, 2, . . . ) be the complete orthonormal basis of K introduced above.
Applying Hölder inequality, we have

E

∥∥∥∥∥
t∫

0

ψ(s) dZΓ (s)

∥∥∥∥∥
2

H

= E

∥∥∥∥∥
∞∑
n=1

t∫
0

t∫
0

√
λnK

∗
H(ψen)(y1, y2) dB(y1) dB(y2)

∥∥∥∥∥
2

=

∞∑
n=1

E

∥∥∥∥∥
t∫

0

t∫
0

√
λnK

∗
H(ψen)(y1, y2) dB(y1) dB(y2)

∥∥∥∥∥
2

6
∞∑
n=1

2Ht2H−1

t∫
0

λn
∥∥ψ(s)en

∥∥2

L0
2

ds

= 2Ht2H−1

t∫
0

∥∥ψ(s)
∥∥2

L0
2

ds.
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3 Main results

In this part, conditions guaranteeing existence, uniqueness and exponential stability of
mild solution to Eq. (1) are presented. The next definition introduces the concept of
solution for the stochastic system (1).

Definition 3. A process {u(t), t ∈ [−τ, T ]} (with T > 0) that evolves on H is referred
to as mild solution of (1) if it satisfies the next four conditions:

(i) u(t) is Ft-adapted and satisfies
∫ T

0
‖u(t)‖2 dt < +∞ almost surely, t > 0;

(ii) u(t) is càdlàg, i.e., it is right continuous with left-limit paths on [0, T ] almost
surely;

(iii) u(t) = ζ(t), −τ 6 t 6 0;
(iv) For all t ∈ [0, T ], u(t) satisfies

u(t) +G
(
t, u
(
t−R(t)

))
= R(t)

(
ζ(0) +G

(
0, ζ
(
−r(0)

)))
+

t∫
0

R(t− s)F
(
s, u
(
s− ρ(s)

))
ds+

t∫
0

R(t− s)Γ (s) dZH(s)

+

t∫
0

∫
Λ

R(t− s)σ
(
s, u
(
s− k(s)

)
, ν
)
Ñ(ds,dν)

+
∑

0<tk<t

R(t− tk)Ik
(
u(tk)

)
P-p.s.

In order to prove the main result in this section, we require the following assumptions:

(H4) The functions F (t, ·), G(t, ·) and σ satisfy global Lipschitz conditions, that is,
there exists K, K̄ > 0 such that for any η, ζ ∈ H and t > 0,∥∥F (t, ζ)− F (t, η)

∥∥2

H 6 K‖ζ − η‖2H,∫
Λ

∥∥σ(t, ζ, ν)− σ(t, η, ν)
∥∥2

H λ(dν) 6 K‖ζ − η‖2H,∥∥G(t, ζ)−G(t, ζ)
∥∥2

H 6 K̄‖ζ − η‖2H,

F (t, 0) = G(t, 0) = σ(t, 0, ν) = 0, t > 0, ν ∈ Λ.

(H5) The function G is continuous in the quadratic mean sense, i.e., for all κ1, κ2 ∈
D([0, T ], L2(Ω,H)),

lim
t→s

∥∥G(t, κ1)−G(s, κ2)
∥∥2

= 0.
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(H6) There exists a real number γ > 0 such that the function G : [0,+∞) →
L0

2(K,H) satisfies
+∞∫
0

e2γs
∥∥G(s)

∥∥2

L0
2

ds <∞.

(H7) The impulsive functions Ik (k = 1, 2, . . . ) satisfy the following conditions:
Ik ∈ C(H,H), and there exists some positive numbers qk, k = 1, 2, . . . , such
that ‖Ik(x)− Ik(x)‖H 6 qk‖x− y‖H and Ik(0) = 0 for all x, y ∈ H.

The main result of this paper is given in the next theorem.

Theorem 1. Suppose that (H1)–(H7) hold and that

(i) There exists a constant q̃ > 0 such that qk 6 q̃(tk − tk−1), k = 1, 2, . . . ;
(ii) The initial value ζ satisfies E‖ζ(t)‖2H 6 M0E‖ζ‖2De−at, t ∈ [−τ, 0], for some

M0 > 0, a > 0;
(iii) 4[K̄ +M2Kκ−2 +M2K(2κ)−1 +M−2q̃κ−2] 6 1.

Then, for all T > 0, Eq. (1) has a unique mild solution on [−τ, T ] and is exponential
decay to zero in mean square, i.e., there exists a pair of positive constants a > 0 and
µ = µ(ζ, a) such that

E
∥∥u(t)

∥∥2

H 6 µe−at, t > 0.

Proof. In this proof, we letMζ be the set all càdlàg processes u(t, ω) : [−τ, T ]×Ω → H
satisfying the next two conditions: (i) u(t) = ζ(t), t ∈ [−τ, 0], and (ii) there exist some
constants µ = µ(ζ, a) > 0 and a > 0 such that E‖u(t)‖2 6 µe−at for all t > 0. We
point out thatMζ equipped with the norm ‖·‖Mζ

is a Banach space.
To clarify the next reasoning, take the operator Φ onMζ as

Φ(u)(t) = ζ(t), t ∈ [−τ, 0],

and for t ∈ [0, T ],

Φ(u)(t) = R(t)
(
ζ(0) +G

(
0, ζ
(
−r(0)

)))
−G

(
t, u
(
t− r(t)

))
+

t∫
0

R(t− s)F
(
s, u
(
s− ρ(s)

))
ds+

t∫
0

R(t− s)Γ (s) dZH(s)

+

t∫
0

∫
Λ

R(t− s)σ
(
s, u
(
s− k(s)

)
, ν
)
Ñ(ds,dν)

+
∑

0<tk<t

R(t− tk)Ik
(
u(tk)

)
.

Now, we prove that Φ has a fixed point inMζ .
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The remaining arguments for proving the above theorem are divided into the following
three main steps.

Step 1. We show that Φ(Mζ) ⊂Mζ .
Let u(·) ∈Mζ , then we have∥∥EΦ(u)(t)

∥∥2

H

6 6

[
E
∥∥R(t)

(
ζ(0) +G

(
0, ζ
(
−r(0)

)))∥∥2

H + E
∥∥G(t, u(t− r(t)(t)))∥∥2

H

+ E

∥∥∥∥∥
t∫

0

R(t− s)F
(
s, u
(
s− ρ(s)

))
ds

∥∥∥∥∥
2

H

+ E

∥∥∥∥∥
t∫

0

R(t− s)Γ (s) dZH(s)

∥∥∥∥∥
2

H

+ E

∥∥∥∥∥
t∫

0

∫
Λ

R(t− s)σ
(
s, u
(
s− k(s)

)
, ν
)
Ñ(ds,dν)

∥∥∥∥∥
2

H

+ E

∥∥∥∥ ∑
0<tk<t

R(t− tk)Ik
(
u(tk)

)∥∥∥∥2

H

]

:= 6

6∑
k=1

Pk. (7)

Without loss of generally, we may assume that 0 < a < κ. Now, let us estimate the terms
on right-hand side of inequality (7). Let µ = µ(g, a) > 0 and a > 0 such that

E
∥∥u(t)

∥∥2

H 6 µe−at, t > 0.

Then by assumption (H3) we have

P1 6M2E
∥∥ζ(0) +G

(
0, ζ
(
−r(0)

))∥∥2

He−κt 6 C1e−κt, (8)

where C1 = E‖ζ(0) +G(0, ζ(−r(0)))‖2H <∞. By using assumption (H4) we obtain

P2 6 E
∥∥G(t, u(t− r(t)))−G(t, 0)

∥∥2

H

6 K̄E
∥∥u(t− r(t))∥∥2

H

6 K̄
[
µe−a(t−r(t)) + E

∥∥ζ(t− r(t))∥∥2

H

]
6 K̄

[
µ+M0E‖ζ‖2D

]
e−a(t−r(t))

6 K̄
[
µ+M0E‖ζ‖2D

]
e−ateaτ 6 C2e−at, (9)

where C2 = K̄[µ+M0E‖ζ‖2D]eaτ .
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Using Hölder inequality and (H4), we have

P3 6 E

∥∥∥∥∥
t∫

0

R(t− s)F
(
s, u
(
s− ρ(s)

))
ds

∥∥∥∥∥
2

H

6 E

( t∫
0

∥∥R(t− s)F
(
s, u
(
s− ρ(s)

))∥∥
H ds

)2

6M2

t∫
0

e−κ(t−s) ds

t∫
0

e−κ(t−s)E
∥∥F (s, u(s− ρ(s)

))∥∥2

H ds

6M2K

t∫
0

e−κ(t−s) ds

t∫
0

e−κ(t−s)E
∥∥u(s− ρ(s)

)∥∥2

H ds

6M2Kκ−1
(
µ+M0E‖ζ‖2D

)
eaτe−at

t∫
0

e(a−κ)(t−s) ds

6M2Kκ−1(κ− a)−1
(
µ+M0E‖ζ‖2D

)
eaτe−at 6 C3e−at, (10)

where C3 = M2Kκ−1(κ− a)−1(µ+M0E‖ζ‖2D)eaτ < +∞.
By using Lemma 2, we get that

P4 = E

∥∥∥∥∥
t∫

0

R(t− s)Γ (s) dZH(s)

∥∥∥∥∥
2

H

6 2M2Ht2H−1

t∫
0

e−2κ(t−s)∥∥Γ (s)
∥∥2

L0
2

ds. (11)

If γ < κ, then the following estimate holds:

P4 6 2M2Ht2H−1

t∫
0

e−2κ(t−s)e−2γ(t−s)e2γ(t−s)∥∥Γ (s)
∥∥2

L0
2

ds

6 2M2Ht2H−1e−2γt

t∫
0

e−2(κ−γ)(t−s)e2γs
∥∥Γ (s)

∥∥2

L0
2

ds

6 2M2HT 2H−1e−2γt

T∫
0

e−2(κ−γ)(t−s)e2γs
∥∥Γ (s)

∥∥2

L0
2

ds

6 2M2HT 2H−1e−2γt

T∫
0

e2γs
∥∥Γ (s)

∥∥2

L0
2

ds. (12)
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If κ < γ, then the following estimate holds:

P4 6 2M2HT 2H−1e−2κt

T∫
0

e2γs
∥∥Γ (s)

∥∥2

L0
2

ds. (13)

Using (11), (12) and (13), we have

P4 6 C4e−min(κ,γ)t, (14)

where C4 = 2M2HT 2H−1
∫ T

0
e2γs‖Γ (s)‖2L0

2
ds < +∞. On the other hand, by assump-

tions (H3) and (H4) we get

P5 = E‖
t∫

0

∫
Λ

R(t− s)σ
(
s, u
(
s− k(s)

)
, ν
)
Ñ(ds,dν)‖2H

6M2E

t∫
0

e−2κ(t−s)
∫
Λ

∥∥σ(s, u(s− k(s)
)
, ν
)∥∥2

H λ(dν) ds

6M2K

t∫
0

e−2κ(t−s)E
∥∥u(s− k(s)

)∥∥2

H ds

6M2K

t∫
0

e−2κ(t−s)(µ+M0E‖ζ‖2D
)
e−a(s−ρ(s)) ds

6M2K
(
µ+M0E‖ζ‖2D

)
eτae−at

t∫
0

e−2κ(t−s)e−aseat ds

6M2K
(
µ+M0E‖ζ‖2D

)
eτae−at

t∫
0

e−(2κ−a)(t−s) ds

6M2K
(
µ+M0E‖ζ‖2D

)
(2κ− a)−1eτae−at 6 C5e−at, (15)

where C5 = M2K(µ+M0E‖ζ‖2D)(2κ−a)−1eτa < +∞. Now, by combining (H7) and
Cauchy–Schwartz inequality, we obtain the following estimation for the impulsive term:

P6 6 E

[ ∑
0<tk<t

Me−κ(t−tk)qk
∥∥u(tk)

∥∥
H

]2

6M2E

[ ∑
0<tk<t

e−κ(t−tk)q̃(tk − tk−1)
∥∥u(tk)

∥∥
H

]2

6M2q̃2E

( t∫
0

e−κ(t−s)‖u(s)‖H ds

)2
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6M2q̃2E

t∫
0

e−κ(t−s) ds

t∫
0

e−κ(t−s)∥∥u(s)
∥∥2

H ds

6M2q̃2κ−1µe−at
t∫

0

e−(κ−a)(t−s) ds

6M2q̃2κ−1µ(κ− a)−1e−at, (16)

where C6 = M2q̃2κ−1µ(κ − a)−1 < +∞. Inequality (8), (9), (10), (14), (15) and (16)
together imply that E‖Φ(u)(t)‖2H 6 M̄e−āt for some M̄ > 0 and ā > 0.

Step 2. Next, we show that Φ(u)(t) is càdlàg process onMζ . Let 0 < t < T and
h > 0 be sufficiently small. Then, for any fixed u(t) ∈Mζ , we have

E
∥∥Φ(x)(t+ h)− Φ(u)(t)

∥∥2

H

6 6

[
E‖
(
R(t+ h)−R(t)

)(
G(0) + ζ

(
0, G

(
−r(0)

)))∥∥2

H

+ E
∥∥G(t+ h, u

(
t+ h− r(t+ h)

))
−G

(
t, u
(
t− r(t)

))∥∥2

H

+ E

∥∥∥∥∥
t+h∫
0

R(t+ h− s)F
(
s, u
(
s− ρ(s)

))
ds

−
t∫

0

R(t− s)F
(
s, u
(
s− ρ(s)

))
ds

∥∥∥∥∥
2

H

+ E

∥∥∥∥∥
t+h∫
0

R(t+ h− s)Γ (s) dZH(s)−
t∫

0

R(t− s)Γ (s) dZH(s)

∥∥∥∥∥
2

H

+ E

∥∥∥∥∥
t+h∫
0

∫
Λ

R(t+ h− s)σ
(
s, u
(
s− k(s)

)
, ν
)
Ñ(ds,dν)

−
t∫

0

∫
Λ

R(t− s)σ
(
s, u
(
s− k(s)

)
, ν
)
Ñ(ds,dν)

∥∥∥∥∥
2

H

+ E

∥∥∥∥ ∑
0<tk<t+h

R(t+ h− tk)Ik
(
u(tk)

)
−

∑
0<tk<t

R(t− tk)Ik
(
u(tk)

)∥∥∥∥2

H

]

:= 6

6∑
k=1

E
∥∥Pk(t+ h)− Pk(t)

∥∥2

H,
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E
∥∥P3(t+ h)− P3(t)

∥∥2

H

6 E

∥∥∥∥∥
t∫

0

[
R(t+ h− s)−R(t− s)

]
F
(
s, u
(
s− ρ(s)

))
ds

∥∥∥∥∥
2

H

+ E

∥∥∥∥∥
t+h∫
t

R(t+ h− s)F
(
s, u
(
s− ρ(s)

))
ds

∥∥∥∥∥
2

H

6

t∫
0

∥∥R(s+ h)−R(s)
∥∥2

dsE

t∫
0

∥∥F (s, u(s− ρ(s)
))∥∥2

H ds

+M2TE

t+h∫
t

e−2κ(t+h−s)∥∥F (s, u(s− ρ(s)
))∥∥2

H ds (17)

and

E

t∫
0

∥∥F (s, u(s− ρ(s)
))∥∥2

H ds

6 K

t∫
0

E
∥∥u(s− ρ(s))

∥∥2

H ds 6 K

t∫
0

(
µ+M0E‖ζ‖2D

)
e−a(s−ρ(s)) ds

6 K(µ+M0E‖ζ‖2D)eτt
t∫

0

e−as ds 6 K(µ+M0E‖ζ‖2D)eτte−at
t∫

0

ea(t−s) ds

6 K(µ+M0E‖ζ‖2D)eτta−1e−at. (18)

From inequality (18) it follows that there exist a constant K∗ > 0 such that

E

t∫
0

e−2κ(t−s)∥∥F (s, u(s− ρ(s)
))∥∥2

H ds 6 K∗. (19)

By using the norm continuity of the resolvent operator, inequalities (17), (19) and
Lebesgue’s dominated convergence theorem, it follows that E‖P3(t+h)−P3(t)‖2H → 0
as h→ 0.

Similarly, we can verify that E‖Pk(t+h)−Pk(t)‖2H → 0 as h→ 0, k = 1, 2, 4, 5, 6.
The above arguments show that t → Φ(u)(t) is càdlàg process. Then we conclude that
Φ(Mζ) ⊂Mζ .

Step 3. In this part, we show that Φ :Mζ →Mζ is a contraction mapping. Now, fix
x, y ∈Mζ , and we have

E
∥∥Φ(x)(t)− Φ(y)(t)

∥∥2

H 6 4

[
E
∥∥G(t, x(t− r(t)))−G(t, y(t− r(t)))∥∥2

H
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+ E

∥∥∥∥∥
t∫

0

R(t− s)
[
F
(
s, x
(
s− ρ(s)

))
− F

(
s, y
(
s− ρ(s)

))]
ds

∥∥∥∥∥
2

H

+ E

∥∥∥∥∥
t∫

0

∫
Λ

R(t− s)
[
σ(s, x

(
s− k(s)

)
, ν)− σ

(
s, y
(
s− k(s)

)
, ν
)]
Ñ(ds,dν)

∥∥∥∥∥
2

H

+ E

∥∥∥∥∥ ∑
0<tk<t

R(t− tk)
[
Ik
(
x(tk)

)
− Ik

(
y(tk)

)]∥∥∥∥∥
2

H

]

:= 4

4∑
k=1

Jk. (20)

Using assumption (H4), the first term of (20) imply

J1 6 E
∥∥G(t, x(t− r(t)))− ϕ(t, y(t− r(t)))‖2H,

u
(
s− k(s)

)
6 K̄E

∥∥x(s− r(s))− y(t−R(t− s)
)∥∥2

H

6 K̄ sup
t>0

E
∥∥u(t)− y(t)

∥∥2

H. (21)

Using Hölder inequality and assumption (H4), we have

J2 6 E

∥∥∥∥∥
t∫

0

R(t− s)
[
F
(
s, x
(
s− ρ(s)

))
− F

(
s, y
(
s− ρ(s)

))]
ds

∥∥∥∥∥
2

H

6M2K

t∫
0

e−κ(t−s) ds

t∫
0

e−κ(t−s)E
∥∥x(s− ρ(s)

)
− y
(
s− ρ(s)

)∥∥2

H ds

6M2K

( t∫
0

e−κ(t−s) ds

)2

sup
t>0

E
∥∥x(t)− y(t)

∥∥2

H

6M2Kκ−2 sup
t>0

E
∥∥x(t)− y(t)

∥∥2

H, (22)

J3 6 E

∥∥∥∥∥
t∫

0

∫
Λ

R(t− s)
[
σ
(
s, x
(
s− k(s)

)
, ν
)
− σ

(
s, y(s− k(s)), ν

)]
Ñ(ds,dν)

∥∥∥∥∥
2

H

6 E

t∫
0

∫
Λ

∥∥R(t− s)
[
σ
(
s, x
(
s− k(s)

)
, ν
)
− σ

(
s, y
(
s− k(s)

)
, ν
)]
‖2H λ(dν) ds
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6M2E

t∫
0

e−2κ(t−s)
∫
Λ

∥∥σ(s, x(s− k(s)
)
, ν
)
− σ

(
s, y
(
s− k(s)

)
, ν
)]∥∥2

H λ(dν) ds

6M2K

t∫
0

e−2κ(t−s) sup
t>0

E
∥∥x(t)− y(t)

∥∥2

H ds

6M2K(2κ)−1
(

sup
t>0

E
∥∥u(t)− y(t)

∥∥2

H

)
. (23)

For the last term, we have

J4 6 E

∥∥∥∥∥ ∑
0<tk<t

R(t− tk)
[
Ik
(
x(tk)

)
− Ik

(
y(tk)

)]∥∥∥∥∥
2

H

6M2E

[ ∑
0<tk<t

e−κ(t−tk)q̃(tk − tk−1)
∥∥x(tk)− y(tk)

∥∥
H]2

6M2q̃2E

( t∫
0

e−κ(t−s)∥∥x(s)− y(s)
∥∥
H ds

)2

6M2q̃2E

t∫
0

e−κ(t−s) ds

t∫
0

e−κ(t−s)∥∥x(s)− y(s)
∥∥2

H ds

6M2q̃2κ−2(sup
t>0

E
∥∥x(t)− y(t)

∥∥2

H). (24)

Thus inequalities (21), (22), (23) and (24) together imply

E
∥∥Φ(x)(t)− Φ(y)(t)

∥∥2

H 6 4
[
K̄ +M2Kκ−2 +M2K(2κ)−1 +M2q̃2κ−2

]
×
(

sup
t>0

E
∥∥x(t)− y(t)

∥∥2

H

)
.

Therefore, by inequality (iii) of Theorem 1 it follows that Φ is a contractive mapping.
Then the fixed point theorem implies that system (1) possesses a unique mild solution and
this solution is exponentially stable in mean square.

4 Application

In this section, an example is presented to illustrate the obtained theory, which can be
used, for example, as models for population dynamics like in [1], where the author use
model 1 with F ≡ 0, A ≡ 0, Θ ≡ 0 and σ ≡ 0. We consider the following impulsive
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neutral stochastic integrodifferential equations:

∂

∂t

[
β(t, ξ) + u1

(
t, β
(
t− ρ(t), ξ

))]
=

∂2

∂ξ2

[
β(t, ξ) + u1

(
t, β
(
t− ρ(t), ξ

))]
+

t∫
0

b̃(t− s) ∂
2

∂ξ2

[
β(t, ξ) + u1

(
t, β
(
t− ρ(t), ξ

))]
ds

+ f1(t, β
(
t− τ(t), ξ

)
) dt+ e−t dZH(t)

+

∫
Λ

h1

(
t, β
(
t− k(t), ξ

)
, ν
)
Ñ(dt, dν), t 6= tk, t > 0,

∆β(tk, ξ) = β
(
t+k , ξ

)
− β

(
t−k , ξ

)
= Ik

(
β(tk, ξ)

)
, t = tk, k = 1, 2, . . . ,

β(t, 0) + u1

(
t, β(t− ρ(t), 0)

)
= 0, t > 0,

β(t, π) + u1

(
t, β(t− ρ(t), π)

)
= 0, t > 0,

β(θ, ξ) = β0(θ, ξ), θ ∈ [−τ, 0], ξ ∈ [0, π],

where r > 0. Let H = L2(0, π) with the norm ‖·‖, en :=
√

2/π sin(nx) (n = 1, 2, . . . )
denote the completed orthonormal basis in H, and ZH is a Rosenblatt process.

Define A : D(A) ⊂ H → H by A = ∂2/∂z2 with D(A) = H2(0, π) ∩ H1
0 (0, π).

Then

Aĥ = −
∞∑
n=1

n2 < ĥ, en > en, ĥ ∈ D(A),

where (en)n∈N is the orthonormal set of eigenvectors of operator A. It is easy to prove
that A is the infinitesimal generator of a strongly continuous semigroup (S(t))t>0; thus,
(H1) is true and ‖S(t)‖ 6 1/(et) 6 1.

We denote by Θ(t) : D(A) ⊂ H → H the operator defined by Θ(t)z = b̃(t)Az for
t > 0 and z ∈ D(A).

LetH = R, and let Λ = {z ∈ H: 0 < |z|H 6 c, c > 0}. We suppose that

(i) For t > 0, ν ∈ Λ, u1(t, 0) = f1(t, 0) = h(t, 0, ν) = 0.
(ii) There exist a positive constant k̄ such that for all t > 0, ξ1, ξ2 ∈ R,∥∥u1(t, ξ1)− u1(t, ξ2)

∥∥2

H 6 k̄‖ξ1 − ξ2‖2H.

(iii) There exist a positive constant k1 such that for all t > 0, ξ1, ξ2 ∈ R,∫
Λ

∥∥h1(t, ξ1)− h1(t, ξ2)
∥∥2

H λ(dν) ∨
∥∥f1(t, ξ1)− f1(t, ξ2)

∥∥2

H 6 k1‖ξ1 − ξ2‖2H.

(iv) There exist a positive constant qk, k = 1, 2, . . . , such that, for k = 1, 2, . . . and
ξ1, ξ2 ∈ H, ∥∥Ik(ξ1)− Ik(ξ2)

∥∥
H 6 qk‖ξ1 − ξ2‖H.
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For t > 0, ξ ∈ [0, π] and ζ aD-valued function, define the functionsG : R+×D → H,
ψ : R+ ×D → L0(H,H) F : R+ ×D → H and σ : R2 ×Hc× → H for the finite delay
as follows:

G(t, ς)(ξ) = u1

(
t, ς
(
t− ρ(t), ξ

))
,

F (t, ς)(ξ) = f1

(
t, ς
(
t− τ(t), ξ

))
,

Γ (t)(ξ) = e−t,

σ(t, ς, z)(ξ) = h1

(
t, ς
(
t− k(t, ξ)

)
, ν
)
.

For ξ ∈ [0, π], we put

u(t) = β(t, ξ), t > 0, ζ(θ)(ξ) = β0(θ, ξ), θ ∈ [−τ, 0],

then Eq. (1) takes the following form:

d
[
u(t) +G(t, xt)

]
=

(
A
[
u(t) +G(t, xt)

]
+

t∫
0

Θ(t− s)
[
u(s) +G(s, xs)

]
ds+ f(t, xt)

)
dt

+ Γ (t) dZH(t) +

∫
Λ

φ(t, u(t), ν)Ñ(dt, dν), t > 0, t 6= tk,

∆u(tk) = x(t+k )− x(t−k ) = Iku(tk), t = tk, k = 1, 2, . . . ,

u0(·) = ζ(·).

Moreover, if b̃ is bounded and a C1 function such that its derivative b̃′ is bounded and
uniformly continuous, then (H1) and (H2) are satisfied, and hence, by Theorem 2.1 in [9],
Eq. (2) has a resolvent operator (r(t))t>0 on H.

By assumptions (i)–(iv) we have∥∥u(t, φ1)− u(t, φ2)
∥∥2

H 6 K̄‖φ1 − φ2‖2H,∫
Λ

∥∥h1(t, φ1)− h1(t, φ2)
∥∥2

H λ(dν) ∨
∥∥f1(t, φ1)− f1(t, φ2)

∥∥2

H 6 K‖φ1 − φ2‖2H

and ∥∥Ik(ζ)− Ik(η)
∥∥
H 6 qk‖ζ − η‖H

for k = 1, 2, . . . and η,∈ H. Then all assumptions (H1)–(H6) are fulfilled, and hence,
there exists a mild solution for (1).

We assume moreover that there exists β > a1 > 1 and b̃(t) < e−βt/a1 for all t > 0.
Thanks to Lemma 5.2 in [9], we have the following estimates: ‖R(t)‖6 e−λt, where
λ = 1 − 1/a. Consequently, all the hypotheses of Theorem 1 are fulfilled. Therefore,
Eq. (1) possesses a unique mild solution, which is exponentially stable, provided that
K̄ + M2Kκ−2 + M2K(2κ)−1 + M−2q̃κ−2 6 1/4, and there exist a constant q̃ 6
qk(tk − tk−1), k = 1, 2, . . . .
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