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A B S T R A C T   

Understanding yield responses to nutrient application is a key input for extension advice and strategic agricul
tural investments in developing countries. A commonly used model for yield responses to nutrient inputs in 
tropical smallholder farming systems is QUEFTS (QUantitative Evaluation of the Fertility of Tropical Soils). 
While QUEFTS has a strong conceptual foundation, a key assumption is that nutrients are the only limiting 
factors. One implication of this is the required assumption of ‘perfect management’. This may be problematic in 
the application of QUEFTS in smallholder farming systems with a wide variety of yield limiting factors. 

In a previous study, QUEFTS was calibrated using farm trials in two major maize production zones in Nigeria. 
To reduce observed variability in correlations between estimated soil nutrient (N, P, K) supply and soil pa
rameters (e.g. soil organic carbon, soil pH; step 1 of QUEFTS) a Mahalanobis distance method was used to remove 
data points not adhering to expected correlations. In this study, we assessed an alternative approach: can the 
QUEFTS model be adapted to fit smallholder farming systems and associated variation in management? Using 
676 observations from the same nutrient omission trials in two major maize production zones in Nigeria, we 
compare a standard linear regression approach with a quantile regression approach to calibrate QUEFTS. 

We find that under the standard linear regression approach, there is a poor relation between predicted and 
observed yields. Using quantile regression, however, QUEFTS performed better at predicting attainable yields – 
defined as the 90th percentile of observed yields – under a wide variety of production conditions. Our results 
indicate that using quantile regression as a way to predict attainable yields, is a useful alternative imple
mentation of QUEFTS in smallholder farming systems with high variability in management and other 
characteristics.   

1. Introduction 

With cereal yield levels around 1 t ha− 1, crop productivity in sub- 
Saharan Africa (SSA) is low in comparison with other regions (Ehui 
and Pender, 2005; FAO, 2019). Current yields are only 15–27 % of the 
water-limited potential yield (van Ittersum et al., 2016), which is the 
achievable yield when water supply is the only limiting factor (Van 
Ittersum et al., 2013). Given the anticipated increase in population 
growth and food demand, significant improvements in SSA’s produc
tivity are required (van Ittersum et al., 2016). There is consensus that 

increased use of inorganic fertiliser inputs will be required for such 
productivity gains (World Bank, 2005; Holden, 2018; Sanchez, 2002; ten 
Berge et al., 2019; Wanzala-Mlobela et al., 2013), as current fertiliser 
use levels in SSA are low (Banful et al., 2010; Jayne and Rashid, 2013; 
Morris et al., 2007; Sheahan and Barrett, 2014) with 16.2 kg fertiliser 
per ha in 2016 (World Bank, 2019). 

Despite this consensus, increased fertiliser application does not al
ways translate into increased yields. Responses to fertiliser application 
vary considerably in practice. In a meta-analysis on the agronomic ni
trogen use efficiency (N-AE) of inorganic fertiliser across SSA, the 
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average N-AE for maize was found to be 18 kg additional grain yield per 
kg N applied (in dry weight; Ichami et al., 2019). Variation from this 
average value is large with observed N-AE values in the field ranging 
from negative up to 50 kg grain kg N− 1 (ten Berge et al., 2019; Vanlauwe 
et al., 2011). 

The variable responses to fertiliser application in SSA are often 
attributed to different levels of inherent soil fertility and management 
(Njoroge et al., 2019, 2017; Ojiem et al., 2014; Vanlauwe et al., 2011; 
Zingore et al., 2007). For example, soils that are very low in organic 
matter content show a lower fertiliser response than soils with a higher 
organic matter content (Marenya and Barrett, 2009; Tittonell and Giller, 
2013; Zingore et al., 2007). Other soil parameters found to correlate 
with fertiliser response are soil pH (Burke et al., 2017; Ichami et al., 
2019), soil texture (Burke et al., 2017), exchangeable K and P-Olsen 
(Ichami et al., 2019). 

Site-specific fertiliser recommendations have been proposed to ac
count for the variation in yield responses by optimizing fertiliser use 
based on specific soil conditions (Dobermann et al., 2002). One manner 
to provide such site-specific fertiliser recommendations is using fertiliser 
response models such as QUEFTS (QUantative Evaluation of the Fertility 
of Tropical Soils). The QUEFTS model predicts yield based on soil pa
rameters and fertiliser inputs (Janssen et al., 1990; Smaling and Janssen, 
1993). In QUEFTS, a number of equations link soil parameters to soil 
nutrient (N, P, K) supply, fertiliser recovery, nutrient uptake and grain 
yields (Fig. 1). In step 1, soil parameters (soil organic matter, pH, per
centage clay, P-Olsen and Kexch) are linked to potential soil supply of N, 
P and K (Janssen et al., 1990; Smaling and Janssen, 1993). In steps 2–4, 
nutrient uptake and yield are estimated based on the calculated soil 
supply of N, P and K in step 1 and fertiliser application. 

The strength of QUEFTS lies in the manner in which it treats the 
response of the three macronutrients N, P and K: separately vis-à-vis 
their interactions. This enables the identification of locally optimal 
combinations of N, P and K fertiliser application rates. The QUEFTS 
model has gained widespread use within the scientific and agricultural 
community, mainly due to the limited amount of required input data (i. 
e., soil properties, fertiliser application rate and potential yield) and 
relative ease of use. With new geospatial data tools and larger access to 
open data, there is an increased demand for fertiliser response maps, 
based on models such as QUEFTS. 

The weakness of QUEFTS also lies within its design: QUEFTS predicts 

yields based on soil conditions and fertiliser application, under the 
condition that there are no other yield limiting factors (such as late 
planting, seed quality issues, occurrence of weeds, pests and diseases or 
issues such as soil compaction). In practice, especially in tropical 
smallholder farming systems, these limitations are widespread, even in 
researcher-managed or on-farm field trials. In Shehu et al. (2019), such 
yield data, limited by other factors than nutrients, was used to calibrate 
QUEFTS. To accommodate calibration, an outlier selection was per
formed based on expected correlations between soil characteristics and 
soil nutrient supply. We see two limitations of this approach: 1) Data 
point removal is based on hypothesized correlations (correlations which 
are then used in QUEFTS); and 2) variation in yield responses that 
smallholder farmers experience might be reduced. 

To circumvent these two limitations, in this study we recalibrated 
and validated QUEFTS using the same TAMASA nutrient omission trial 
(NOT) dataset for Nigeria while basing the outlier selection only on 
observed extremities in plant parameters and compared results with the 
Shehu et al. (2019) calibration. In addition, we used a quantile regres
sion as an alternative approach to calibrate QUEFTS and predict 
attainable yields. 

2. Materials and methods 

2.1. The QUEFTS model: four steps 

The following sections concisely describe the QUEFTS model (Fig. 1), 
for a more elaborate explanation readers are referred to Janssen et al. 
(1990) and Smaling and Janssen (1993). 

2.1.1. QUEFTS step 1 
In the first step of the QUEFTS model, soil nutrient supply of nitrogen 

(N), phosphorus (P) and potassium (K) is calculated using four soil pa
rameters: pH, soil OC, P-Olsen, and exchangeable K. Additional to the 
nutrient supply from the soil, nutrient supply from fertiliser application 
is calculated by adding a term that calculates the fertiliser recovery of 
applied fertilisers. Based on a number of trials in Kenya and Suriname, 
Janssen et al. (1990) developed Eqs. 1–6. 

SN = fN *6.8* orgC + IN * RN (1)  

Sp = 0.5* P-Olsen + fP* 0.35* orgC + IP*RP (2)  

SK =
(fK * 400 * Kexch)

(2 + 0.9 * orgC)
+ IK*RK (3)  

fN = 0.25*(pH − 3) (4)  

fP = 1 − 0.5*(pH − 6)2 (5)  

fK = 0.625* (3.4 − 0.4*pH) (6)  

Where SN, SP and SK, are the soil nutrient supply of N, P and K in kg ha− 1; 
fN, fP, fK, are the pH correction factors of N, P and K supply, respectively 
(-); IN, IP, IK, are the nutrient inputs of N, P and K in terms of fertiliser 
application in kg ha− 1; RN, RP, RK, are the maximum recovery fractions 
for fertiliser N, P and K (-); orgC is soil OC in g kg− 1; P-Olsen is soil P- 
Olsen in mg kg− 1; KExch is soil exchangeable K in mmol kg− 1; pH is soil 
pH. 

Eqs. 1–3 are used to calculate the soil nutrient supply and Eqs. 4–6 
express the pH correction factors for Eqs. 1–3, respectively. The equa
tions calibrated by Janssen et al. (1990) apply to soils with a pH from 4.5 
to 7 and a maximum soil OC, P-Olsen and exchangeable K below 70 g 
kg− 1, 30 mg kg− 1 and 30 mmol kg − 1, respectively. 

Smaling and Janssen (1993) recalibrated QUEFTS using different 
parameters in the equations for nutrient supply prediction. N supply was 
predicted based on the organic soil N, temperature and clay percentage. 
P supply was predicted based on total P, soil OC and pH. K supply was 

Fig. 1. Flow diagram of the four steps followed in the QUEFTS model to esti
mate crop yields based on soil parameters and fertiliser application. 
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predicted based on exchangeable K and soil OC. 

2.1.2. QUEFTS step 2 
Step 2 of QUEFTS quantifies the relation between potential soil 

nutrient supply and actual N, P and K uptake. QUEFTS assumes that the 
uptake of one nutrient is limited by the uptake of another nutrient. In the 
case of N, N uptake is limited by P uptake and by K uptake. This results in 
two N uptake estimates, namely one for the nutrient combination NP 
and one for the nutrient combination NK. In confirmation with the law 
of the minimum, QUEFTS takes the lowest of the two N uptake estimates 
for further calculations. P and K uptake are calculated in the same way 
(Janssen et al., 1990). 

For the calculation of nutrient uptake, three defining curves can be 
described on the relation between the potential supply of a given 
nutrient and the actual uptake of the given nutrient (I,II and III). Here we 
explain these for N, but it equally applies to P and K. In curve I, potential 
N supply is relatively low compared to potential supply of P or K. As a 
result, N will be diluted to the maximum in the crop. In this situation, 
potential N supply is assumed to be equal to the actual N uptake (UN =

SN; Sattari et al., 2014). In curve III potential N supply is relatively high 
compared to the potential supply of P or K. N uptake will be limited by 
the amount of P or K taken up (UP = SP; UK = SK). In this situation, N will 
be accumulated to the maximum. Curve II is an integration of a 
regression between the extremes of curves I and III. 

2.1.3. QUEFTS step 3 
In step 3 of QUEFTS, nutrient uptake is converted into maize yield. 

For each nutrient (N,P,K) a yield estimate is calculated for maximum 
accumulation and dilution of that nutrient within the crop. This results 
in 6 yield estimates. It is important that the yield range of a certain 
nutrient combination does not exceed the maximum yield given the 
uptake of the third nutrient and that the estimated yield remains lower 
than the potential yield for a given site. The potential yield should thus 
be estimated prior to running the QUEFTS model. For this study we 

assumed a potential yield of 10 t ha− 1, based on mean annual precipi
tation (Shehu et al., 2019). Lastly, the minimum requirement for 
establishing maize yield is an uptake of 5 kg N ha− 1, 0.4 kg P ha− 1 and 2 
kg K ha− 1, as lower uptake of nutrients will not result in any yield. The 
boundary lines for a minimum and maximum yield for a given nutrient 
uptake estimated in this step are crop dependent (Antwi et al., 2017; 
Janssen et al., 1990; Setiyono et al., 2010; Shehu et al., 2019; Smaling 
and Janssen, 1993). 

2.1.4. QUEFTS step 4 
In step 4 of QUEFTS, the final step, one yield estimate is predicted by 

averaging the 6 yield estimates calculated in step 3 (section 2.1.3). 

2.2. Data collection 

2.2.1. Study area 
Our study area covers the main maize producing areas of northern 

Nigeria − Kano, Kaduna and Katsina states − which together are char
acterized by two agroecological zones (AEZs), the Sudan Savanna (SS) 
and the Northern Guinea Savanna (NGS) (Fig. 2). SS has a drier climate 
and received 600− 800 mm of rain annually in 2015 and 2016. Precip
itation in NGS was 900− 1500 mm annually in 2015 and 2016. In both 
AEZs the rainy season lasts from May to September. May and October 
are the hottest months with a maximum temperature between 35 and 40 
◦C and a minimum temperature between 20 and 25 ◦C. January and 
August are the coldest months with a maximum temperature around 
30–35 ◦C and a minimum temperature around 15 ◦C. Soils in the area are 
haplic Acrisols, haplic Luvisols and haplic Vertisols (ISRIC, 2018). For a 
more detailed description of the study area the reader is referred to 
Shehu et al. (2018). 

The data set for this study was obtained from NOTs conducted in 95 
and 103 fields in the 2015 and 2016 rainy seasons, respectively (Fig. 2). 
In 2015 the fields were located in 10 different districts, while in 2016 
fields were spread over 14 different districts. The sampling frame was 

Fig. 2. Map of Nigeria indicating experimental sites. Fields were located in two different agro-ecological zones (AEZ’s).  
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designed to be representative of the variation in soils and other bio
physical production characteristics across the area of interest, including 
soils and agroecological variation. 

2.2.2. Experimental design 
In each field, NOTs were installed with six different treatments. The 

treatments included a control treatment where no nutrients were 
applied to the soil, treatments where PK, NK and NP were applied and 
thus respectively N, P and K were omitted, a NPK treatment with all 
nutrients applied and a NPK + micronutrients treatment where NPK and 
micronutrients (S, Ca, Mg, Zn & B) were added to the soil. Yield data 
from the NPK + micronutrients treatment was not used in this study. In 
NGS, N was applied at a rate of 140 kg ha− 1 applied in three equal split 
applications at planting, 21 and 42 days after emergence. In SS, N was 
applied in three equal split applications at a rate of 120 kg ha− 1. P and K 
were applied at planting at a rate of 50 kg ha− 1 in NGS and 40 kg ha− 1 in 
SS. Fertiliser treatments were sufficient to reach a potential maize yield 
of 10 t ha− 1 in NGS and 8 t ha− 1 in SS. 

Plots in the research-managed trial sites had a size of 5 * 6 m and 
were prepared by mechanical tillage before planting. Planting was done 
with a spacing of 0.75 m in the inter-row and 0.25 m in the row resulting 
in a plant density of 53,333 plants ha− 1 after thinning. Manual weeding 
was done at least twice during the season. At each location an open 
pollinated maize (OPV) variety and a hybrid variety were planted, 
resulting in 12 treatments in total at each trial site. The OPV variety used 
in NGS and SS matures in 105–110 days and 90–95 days respectively. 
For hybrids the same variety was used in NGS and SS but differed for 
2015 and 2016. The variety used in 2015 matures in 105–110 days and 
the variety used in 2016 matures in 105–118 days. 

2.2.3. Soil data collection 
In every site four soil samples were taken from the 0− 20 cm upper 

soil layer before fertilisers were applied. Soil samples were taken in a 
zig-zag pattern and thoroughly mixed to create one mixed soil sample 
and thus one soil measurement per farm. Soil analyses were carried out 
in the International Institute of Tropical Agriculture (IITA) lab in 
Nigeria. Soil organic carbon was measured with a modified Walkley and 
Black method (Heanes, 1984). Total nitrogen was assessed with the 
micro-Kjeldahl digestion method (Bremner, 1996) and the concentra
tion was measured colorimetrically using N-autoanalyzer (Technicon 
autoanalyzer II, SEAL Analytical Inc, Mequon, WI, USA). Available 
phosphorus, available sulphur, exchangeable cations (K, Ca, Mg, and 
Na) and micronutrients (Zn, Fe, Cu, Mn and B) were assessed with the 
Mehlich-3 extraction procedure (Mehlich, 1984). A glass electrode pH 
meter was used to measure soil pH in a soil: water ratio of 1:1. The 
method by Gee and Or (2002) was used to assess the particle size dis
tribution. For descriptive statistics of soil parameters readers are 
referred to (Shehu et al., 2018, 2019). 

2.2.4. Agronomic data collection 
From each 5 * 6 m plot, the middle 3 * 3 m maize was harvested at 

physiological maturity for crop cut measurements. Plant density, cob 
count, total cob weight and stover fresh weight were recorded. Shelling 
percentage and grain moisture content were measured from a smaller set 
of randomly selected cobs (5 in 2015 and 10 in 2016) to calculate dry 
grain weight from the total fresh cob weight. Grain yield was expressed 
in 15 % moisture content. From the stover, five stalks were randomly 
selected and oven-dried to constant weight at 60 ◦C to measure moisture 
content. In 2015, this procedure did not go as planned. From the 
correctly measured stalks an average moisture content of 52 % was used 
to convert stover weight into dry weight. The dried grain and stover 
samples were also used to assess N, P and K content in the grain and 
stalks. Nitrogen (N) content was digested using micro-Kjeldahl digestion 
method (Bremner, 1996) and the concentration determined colorimet
rically using autoanalyzer (Technicon autoanalyzer II, SEAL Analytical 
Inc, Mequon, WI, USA). P and K concentrations were measured with 

inductively coupled plasma optical emission spectroscopy (ICP-OES, 
Optima 80, Winlab 5.5, PerkinElmer Inc., Waltham, MA, USA) after 
digestion with nitric acid (HNO3). 

2.2.5. Outlier selection in Shehu et al (2019) 
The total Nigeria TAMASA NOT data set contained 1825 observa

tions. Of these, 455 observations contained missing values in at least one 
of the measured parameters and were omitted from analysis in the 
previous study by Shehu et al. (2019) as well as in our study. 

Following, in Shehu et al. (2019) a Mahalanobis Distance outlier 
selection was performed on the whole dataset to discard multivariate 
outliers (n = 219) and separately again for the calibration of each supply 
function for N, P and K (n = 216). Hence, in total 434 data points out of 
1370 observations were removed from the analysis in Shehu et al. 
(2019). A Mahalanobis Distance outlier selection can be used to filter out 
unusual combinations of variables. Such a combination could for 
instance be a field with a high amount of available P in the soil and a 
very low yield. However, QUEFTS also uses available P as one of the 
variables used to predict yield. In this case, the outlier selection in
fluences the equation that is to be calibrated or parameterized. More
over, the observed variation in expected correlations between soil 
characteristics and nutrient supply might have valid reasons, such as 
heterogeneity in management of the farmers’ fields. 

2.2.6. Outlier selection based on plant parameters 
As an alternative approach, in our study, outliers were only removed 

based on extremities observed in plant parameters that could potentially 
influence observed relations strongly. Plant parameter observations 
were removed based on standardized residual values of a linear mixed 
effects model larger than -4 or 4 (n = 52) (an approach similar to Ronner 
et al. (2016)). For the soil parameters there was no reason to assume any 
incorrect measurements. In total 1318 observations were left for data 
analysis. 

2.2.7. Other data preparation 
For calibration purposes, trial sites were selected where within the 

same field and for one variety, yield and soil data was available for the 
four treatments with nutrient application (PK, NK, NP and NPK treat
ment) (n = 676). A total of 169 complete trials (field * variety) were 
found and included in the calibration exercise. Of these 169 complete 
trials, 84 were from OPV and 85 from hybrids. Eleven fields were located 
in SS and 158 fields in NGS. Forty complete trials were from 2015 and 
129 from 2016. The other data points were used for validation. Of those 
676 osbervations used for calibration, d data from the control plots (n =
154) wereere not used for calibration and were excluded from the 
analysis. 

No distinction was made between OPV and hybrid as the varieties 
responded similarly to nutrient application and had a similar harvest 
index (Shehu et al., 2018, 2019). Data from the two different years were 
pooled for analysis. The fields measured in 2016 were different from 
those measured in 2015 and it was thus not possible to form a panel. In 
the analysis of soil nutrient supply against soil parameters (step 1 of 
QUEFTS) no distinction was made for AEZ. The main reason for this was 
that ideally one model calibration should be made for the whole dataset. 
A practical reason was that few data points from SS remained after data 
preparation. 

For running QUEFTS with Janssen et al. (1990) parameters, P-Olsen 
is needed. In this study P-Mehlich was measured. P-Olsen was approx
imated by dividing P-Mehlich values by three (Onduru and Du Preez, 
2007). 

2.3. Calibration of QUEFTS: standard linear or quantile regression? 

First, soil nutrient supply of N, P and K and recovery of applied N, P 
and K were estimated for each trial location (Sections 2.3.1 and 2.3.2). 
Then, two different methods were used to calibrate the first step of 
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QUEFTS: (1) Nutrient supply was correlated to soil parameters using 
standard linear regression, a standard procedure to calibrate QUEFTS; 
and (2) boundary lines of nutrient supply were correlated to soil pa
rameters using quantile regression, as an alternative approach to cali
brate QUEFTS (Sections 2.3.3 and 2.3.4). We used quantile regression 
instead of the upper limits of the prediction intervals resulting from the 
standard linear regression, because the slopes of the quantile regression 
lines behaved differently than the slopes of the standard linear regres
sion. Hence, quantile regression resulted in the best regression estimates 
for the best performing fields. 

Based on significant correlations found in the mentioned analyses, 
two sets of soil supply functions were computed. One set of functions 
was computed for the calibration with standard linear regression and 
one set of functions for the calibration using quantile regression. Finally, 
for both methods Step 2–4 of the QUEFTS model were followed to 
complete the model calibration (Section 2.3.5). 

2.3.1. Estimating potential soil nutrient supply in a specific location 
For both methods, potential soil nutrient supply was derived from 

the measured nutrient uptake in the treatment where that specific 
nutrient was omitted. As such, it was assumed that the potential soil N 
supply was equal to the measured N uptake by the plants in the PK 
treatment. Similarly, the supply of P and K were derived from the 
measured P and K uptake in the NK and NP treatment respectively. 
Hereby we assumed that the availability of the two applied nutrients was 
high enough to ensure that the omitted nutrient was limiting and uptake 
was thus maximal. In the following sections we will use the term 
apparent nutrient supply to indicate that we used measured nutrient 
uptake as an estimate of the nutrient supply of the soil. 

In some cases, nutrient uptake in the nutrient omitted treatment plot 
was lower than nutrient uptake in the corresponding control plot. These 
cases were not excluded from the analysis as this was assumed to be due 
to random errors. We assume that these random errors exist in all fields. 
Therefore, removing only the cases where nutrient uptake in the 
nutrient omitted treatment plot is lower than in the control plot would 
lead to a positive uptake bias. 

2.3.2. Estimating recovery of applied nutrients in each trial location 
In this study, nutrient recovery of applied fertilisers (N, P or K) was 

calculated as the difference in nutrient uptake between a plot receiving 
NPK and a plot where the specific nutrient was omitted, divided by the 
amount of the given nutrient applied in the NPK treatment (Eq. 7). For 
example, for N, this means the difference in N uptake between a plot 
receiving NPK and a plot receiving PK, divided by the amount of N 
applied. Similarly, P and K recovery of applied fertilisers were calculated 
from the difference in nutrient uptake between the NPK and NK and NPK 
and NP treatment, respectively. 

Ri =
(

Ui
NPK − Ui

j

)/
Ii (7)  

Where Ri is the recovery fraction of nutrient i (N, P or K) (-); Ui
NPK is the 

uptake of nutrient i in the NPK treatment in kg ha− 1; Ui
j is the uptake of 

nutrient i in the omission treatment j (PK, NK or NP) in kg ha− 1; Ii is the 
nutrient input rate of nutrient i in kg ha− 1. 

2.3.3. Relating nutrient supply and nutrient recovery to soil parameters 
using standard linear regression 

First, apparent nutrient supply and recovery fractions of N, P and K 
were plotted against different soil parameters to visually check and 
understand the correlations between apparent nutrient supply or re
covery and soil parameters. A linear mixed effects model (Eq. 8) was 
used to test whether relations were significant. Correlations were 
considered significant at p < 0.05. Year and district were added as 
random variables, whereby districts were nested within years. Analysis 
was performed with the ‘nlme’ package in R version 3.4.3. 

Model : Si ∼ soil propertyij, random =∼ 1 | year
/

district (8)  

Where Si is the apparent nutrient supply, of nutrient i in kg ha− 1; where 
soil propertyij is one or more of the measured soil properties j used to 
estimate the apparent supply of nutrient i. 

Initially, recovery fractions of N, P and K were related against soil 
parameters, but no significant relations were found (data not shown). 
Therefore, only average recovery fractions of N, P and K were computed 
with a linear mixed effects model. (Eq. 9). 

Model : Ri ∼ 1, random =∼ 1 | year/ district (9)  

2.3.4. Adapting QUEFTS: relating nutrient supply to soil parameters using 
quantile regression 

Given the heterogeneity in management of smallholder farmers, 
chances are high that the assumption of no yield limiting factors other 
than nutrient limitation was violated in farmers’ fields. As an alternative 
option, a quantile regression was performed to estimate boundary lines 
of maximum potential soil supply of N, P and K for given levels of soil 
parameters. The ‘quantreg’ package in R version 3.4.3 was used to draw 
boundary lines through the 90th percentile. The quantile regressions 
were also run for different quantiles to check if slopes changed for 
different quantiles. For N and K this was not the case. For P there were 
two points having a large influence on the shape of the curve. These two 
points were therefore not taken into account in the boundary analysis. 
ANOVA was used to test significance of the quantile regression lines. 
Average recovery fractions of N, P and K applied were estimated using 
standard linear regression. 

2.3.5. QUEFTS step 2 to 4 
For QUEFTS calibration, the relationships between potential nutrient 

supply and soil parameters in a specific region needs to be quantified 
(step 1). Step 2 to 4 are mainly plant dependent and often do not need 
further calibration. Therefore, the parameters as described by Shehu 
et al. (2019) were used for step 2 to 4. The calibration parameters 
adopted from Shehu at al. (2019) include the boundary lines of physi
ological or internal efficiency in kg grain kg− 1 nutrient of 32 and 79 for 
N, 164 and 528 for P, and 24 and 136 for K. Maximum attainable yield 
was set at 10 t ha− 1 for NGS and 8 t ha− 1 for SS. 

2.4. Validating the different versions of QUEFTS equations 

Validation data (n = 488) was taken from all fields where one or 
more values were missing. This provided sufficient data to validate the 
recalibrated versions of the QUEFTS model. QUEFTS was run with soil 
data and yield data using four sets of step 1 equations: (1) the original 
QUEFTS equations (Janssen et al., 1990); (2) equations previously 
calibrated on the Nigeria NOT data using standard linear regression 
(Shehu et al., 2019); (3) equations calibrated on the Nigeria NOT data 
using standard linear regression in this study; (4) equations calibrated 
on the Nigeria NOT data using quantile regression. Equation set 2 was 
found by using a Mahalanobis Distance outlier selection method. 
Equation sets 3 and 4 were found using an outlier removal based on 
plant parameters. Following, yield estimates were compared with 
observed yields for each location. 

Models based on standard linear regression (sets 1–3) were 
compared for best fit with the root mean square error (RMSE, calculated 
as the square root of the mean squared difference between observed and 
predicted values). The model based on equation set 4 was considered 
valid if the predicted boundary yield line was similar to the measured 
yield for the 0.9 quantile. It was not possible to use any direct measure to 
compare the models based on sets 1–3 to the model based on set 4 
because they are calibrated in different ways. 
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2.5. Gaining further insights in causes for observed variation 

Observed and predicted boundary lines are indicative of maximum 
yield, but do not provide insights into observed variation. Therefore, we 
attempted to explain part of the variation in yield below the observed 
and predicted boundary line, using supplemental data. In both years, 
plant density at harvest was measured. It was evaluated whether plant 
density, as a proxy for suboptimal management, could be used to explain 
part of the yield variation. 

3. Results 

3.1. Calibration of QUEFTS step 1 using standard linear regression 

3.1.1. Soil nutrient supply 
In the original QUEFTS equations, calibrated on field data from 

Kenya (Janssen et al., 1990), soil N supply is linearly correlated with soil 
OC and soil pH (Eq. 1). Alternatively, our data analysis showed no sig
nificant correlation between either soil OC or soil pH and apparent N 
supply (Fig. 3A and B). In our study, there was a significant correlation 
between silt + clay content and apparent N supply (slope = 0.55, p =

Fig. 4. Apparent P supply (in kg ha− 1) in the NK treatment against soil OC (g kg− 1) (A), clay content (%) (B) and soil pH (C). in plot B the coloured solid lines indicate 
significant regression lines for different levels of soil available P (ppm) estimated with a linear mixed effects model and the dashed line indicates the boundary line of 
the 0.9 quantile. In plot C the dashed line indicates the boundary line for the 0.9 quantile excluding observations in the top right corner, the dotted line indicates the 
boundary line for the 0.9 quantile including observations in the top right corner. 

Fig. 3. Apparent N supply (in kg ha− 1) in the PK treatments plotted against soil OC (g kg− 1) (A) soil pH (B) and silt + clay ilt content (%) (C). The solid line indicates 
a significant regression line estimated with a linear mixed effects model. The dashed line indicates the boundary line of the 0.9 quantile. 

Fig. 5. Apparent K supply (in kg ha− 1) in the NP treatment against soil exchangeable K (mmol kg− 1) (A), soil OC (g kg− 1) (B) and soil pH (C). The dashed line 
indicates the boundary line of the 0.9 quantile. 
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0.02). The range in apparent N supply was however very large (Fig. 3C). 
For soil P supply, the original QUEFTS equations assume a linear 

correlation between soil P supply and soil OC and P-Olsen. Additionally, 
a pH correction factor with a parabolic optimum around a pH of 6 is used 
in the original QUEFTS equations to predict soil P supply. In this study, 
no correlation was observed between soil OC and apparent soil P supply 
(Fig. 4A). Based on our field data, a significant correlation was found 
between soil available P and apparent soil P supply, being dependent on 
the clay content of a soil (UP ~ clay content + soil P-Meh, random = 1 | 
year / district; Fig. 4B). 

Based on our field data, no significant correlations were found be
tween apparent soil K supply and soil OC, soil pH or soil exchangeable K 
which are all considered in the original QUEFTS model (Fig. 5). For 
additional figures on apparent nutrient supply and soil parameters, 
readers are referred to appendix A. 

3.1.2. Fertilizer recovery 
The average recovery fractions for N, P and K were 0.39, 0.13 and 

0.14 (Fig. 6). The lowest observed N recovery was - 0.3 and the highest N 
recovery was 1.2. Except for some outliers, P recovery ranged from - 0.2 
to 0.4 and the range for K recovery was from -2 to 2. Variation in 
nutrient recovery was clearly present. No significant correlations were 
observed between soil parameters (soil OC, soil texture, soil pH, soil N, 
soil P and soil exchangeable K) and nutrient recovery (data not shown). 

3.1.3. QUEFTS step 1 equations based on standard linear regression 
Based on significant correlations between apparent nutrient supply 

and soil properties with the mixed effects models, nutrient supply pre

diction equations were developed (Eqs. 10–12). Since for K no signifi
cant correlations were found, the average measured apparent K supply 
was used. A nutrient recovery term was added to all the three equations 
according to the QUEFTS model principle as earlier described, based on 
the average nutrient recovery fraction. 

SN = 24.2 + 0.55*(clay + silt content) + IN* 0.39 (10)  

Sp = 14.1 − 0.28*clay content + 0.23*P-Meh + IP*0.13 (11)  

SK = 90.1 + IK*0.14 (12)  

3.2. Calibration of QUEFTS step 1 using quantile regression 

3.2.1. Soil nutrient supply 
The boundary analysis for the 0.9 quantile showed that maximum 

apparent N supply increased with silt + clay content (y = 0.72 x + 51.9; 
Fig. 3C). 

When the quantile regression was performed for all data on apparent 
P supply and soil pH, a parabolic boundary line was found with a min
imum apparent P supply with a pH less than 5 and a maximum around a 
pH of 7 (Fig. 4C). This relation was however counterintuitive and 
dependent on two outliers (Fig. 4C; two observations in the top right 
corner). When these two outliers were excluded, a quadratic boundary 
line was found with an optimum around a pH of 6 (y = -9.57 x2 + 113.4 
x – 314.7). Therefore, this equation was used in the boundary model of 
QUEFTS. Additionally, quantile regression for the 0.9 quantile showed 
that maximum apparent P supply decreased with an increasing soil clay 
content (Fig. 4B) (-0.65 * clay content + 34.89). For the estimation of 

Fig. 6. Recovery fraction of N (A), P (B) and K (C) against soil OC (g kg− 1), soil available P (ppm) and soil exchangeable K (mmol kg− 1) respectively. The horizontal 
dashed lines indicate the border lines between a positive and negative recovery. The dotted lines indicate the average recovery fractions. 

Fig. 7. Measured yield against predicted yield (t ha− 1) for the original QUEFTS model (A), the model calibrated by Shehu et al. (2019) (B) and the adapted model in 
this study (C). The solid black lines indicate the 1:1 line. The dot dashed lines indicate the regression lines. 
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apparent P supply, it was assumed that the lowest values of the two 
equations was equal to the maximum apparent P supply. 

Quantile regression showed that the maximum apparent K supply 
decreased with increasing soil OC (y = -5.5 x + 197), which is in line 
with the original QUEFTS assumption that K supply decreases with 
diminishing soil OC (Fig. 5B). 

3.2.2. Fertilizer recovery 
No correlations were found between soil properties and maximum 

nutrient recovery using quantile regressions as was the case using 
method 1. Therefore, in method 2 a similar constant average fertiliser 
recovery rate was assumed regardless of soil properties. 

3.2.3. QUEFTS step 1 equations using quantile regression 
Based on the boundary lines, boundary equations were formulated 

that predicted maximum apparent nutrient supply (Eqs. 13–15). Similar 
to the standard linear regression equations a nutrient recovery term was 
added based on the average nutrient recovery fraction. 

SN = 51.9 + 0.72*(clay + silt content) + IN*0.39 (13)  

Sp = min
(
− 314.7 − 9.57*soil pH2 + 113.4*soil pH, 34.9

− 0.65*clay content
)
+ IP*0.13 (14)  

SK = 197.4 − 5.50*soil OC + IK*0.14 (15)  

3.3. Validation of the different sets of QUEFTS equations 

3.3.1. Validity of QUEFTS step 1 equations using standard linear regression 
None of the QUEFTS models in which step 1 was calibrated using 

standard linear regression showed good correlations between predicted 
and observed yields when validated with an independent data set 
(Fig. 7A,B,C). Between them, the newly found equations predicted yields 
relatively better, followed by the original QUEFTS equations and the 
version from Shehu et al. (2019) performed worst, albeit with small 
differences among them (RMSE 2.06, 2.52 and 2.94 respectively). In all 
three cases the regression line deviated substantially from the 1:1 line. 

3.3.2. Validity of QUEFTS step 1 equations using quantile regression 
The QUEFTS boundary model predicts the boundary or attainable 

yield (90th percentile), shown as the red 1:1 line in Fig. 8. The observed 
90th percentile yield line (upper dotted line, Fig. 8) was very similar to 
the predicted 90th percentile yield. This shows that the boundary line 
model was able to predict maximum yield accurately. The 50th 

percentile showed that the median yield for farmers is more or less three 
tonnes per hectare less than the attainable yield, indicating a large range 
in yield responses under similar soil conditions where the measured 
biophysical soil factors alone were not able to explain yield variation. 
With biophysical factors, we specifically refer to the variables either 
tested for or included in the calibrated QUEFTS model (i.e., soil carbon, 
clay and silt content, soil pH, soil available P and soil exchangeable K) 
and potential water limited crop yields (which are dependent on 
climate). 

Considering the range of relevant biophysical factors included and 
the in-field observations on variations in management, we thus observe 
two types of variation in the analysis of yield responses: (1) variation on 
the x-axis which is defined by biophysical factors and (2) variation on 
the y-axis which is determined by farmer management (Fig. 8). Using 
plant density as an explanatory factor showed that most fields with plant 
densities lower than 60 % had yields below the 50th percentile. Although 
plant density is only a single parameter on management, we derive that 
management related factors played a large role in the observed variation 
in yield response to fertiliser application and soil characteristics. For the 
relation between yield and plant density at harvest readers are referred 
to Appendix C. 

4. Discussion 

4.1. Main findings 

Our study indicates that under conditions of highly variable man
agement (which are typical in tropical smallholder farming systems), 
QUEFTS may be most valuable as a predictor of attainable yield rather 
than average yield. We assume that the data used in this study – 1318 
observations from farmer-managed NOTs in northern Nigeria – are 

Fig. 8. Measured yield (in t ha− 1) against predicted yield (in t ha− 1) using the boundary line equations. Different colours of the dots indicate different plant density 
levels at harvest. 100 % refers to 53 333 plants ha− 1. The solid red line indicates the 1:1 line. The dashed lines indicate the boundary lines following the 90th and 
50th percentile. 
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representative of the empirical variability in yield response to nutrient 
management within smallholder systems of the region (e.g. Njoroge 
et al., 2019, 2017; Ojiem et al., 2014; Vanlauwe et al., 2011; Zingore 
et al., 2007). In this sense, our results are relevant for QUEFTS-based 
analysis elsewhere in Africa and other developing regions. 

More concretely, we show that – under variable agronomic man
agement conditions – the current standard approach for training or 
calibrating QUEFTS, involving standard linear regression of conditional 
mean yield responses, is inferior to calibration approaches based on 
quantile regression of conditional responses at the 90th percentile, which 
we use as a measure of attainable yield. A likely explanation is the un
derlying QUEFTS assumption on no other yield limiting factors than 
nutrients (Smaling and Janssen, 1993). This assumption is most likely at 
odds with the variability of plot-level conditions in SSA. Smallholder 
farming systems in Nigeria (and elsewhere) are characterized by a 
multitude of non-nutrient yield limiting factors, including pests, dis
eases, micro-climatic variability, and idiosyncratic management factors. 
Using planting density as an explanatory variable, part of the variation 
in observed yields for similar biophysical conditions could be explained. 
Causes of varying plant densities were not recorded for each field, but 
were, amongst other factors, caused by poor thinning, poor emergence 
due to drought and destruction by termites and other pests. Data vali
dation approaches which ignore such non-nutrient yield limiting factors 
as sources of variability will be fundamentally challenged in predicting 
yield responses. We therefore argue that predicting attainable yields 
makes more sense than predicting yields in such conditions. 

For practical applications, we present an alternative approach to 
empirically calibrating QUEFTS, using quantile regression. This method 
gives relatively robust predictions of attainable yields (90th percentile 
yields), after controlling for other biophysical factors. This makes intu
itive sense, as the attainable yield conceptually corresponds to the yield 
one would attain after addressing other limiting factors. Additionally, 
this method can also be used to predict median yields (as shown in 
Fig. 8) or other percentiles, such as the 50th percentile. These, in com
bination with attainable yields, can provide a farmer with a realistic 
range of yield responses to nutrients applied considering other yield 
limiting factors in addition to soil nutrients. 

Our findings are in contrast with results from (Shehu et al., 2019) 
based on the same data set. Shehu et al. (2019) found a good correlation 
between observed yields and predicted QUEFTS grain yields using 
standard linear regression for estimating indigenous soil nutrient’s 
supply. However, in their analysis a Mahalanobis Distance outlier se
lection method was used to remove multivariate outliers (n = 434), 
aiming to reduce the variability in yield responses to soil parameters. 
Our study, in contrast, selects outliers based on observed extremities in 
plant parameters, taking the standardized residual size of a linear mixed 
model on plant parameters as a criterion (n = 52). In the latter case, 
fewer outliers are removed and more of the observed variation of yield 
responses remained in the dataset. More importantly, in this manner, no 
data is removed based on expected relationships between yield re
sponses and co-variables. 

Other studies found similar challenges in explaining yield variability 
when only biophysical conditions were taken into account. For example, 
Ichami et al. (2019) conducted a meta-analysis using 71 studies aiming 
to identify factors that could help to adjust fertiliser recommendation to 
the biophysical environment. They concluded that in SSA soil pH, 
exchangeable K and soil texture together explained less than 33 % of the 
variation in fertiliser recovery. In Kenya, Njoroge et al. (2017) found 
strong spatial patterns for yield responses to N, P and K fertilizers. Six 
different clusters were identified with different types of responses. Be
tween these clusters however, no differences in mean soil properties 
were observed. In an additional analysis, yield response variation was 
partly attributed due to difference in historical manure management 
(Njoroge et al., 2019). 

4.2. Limitations of this study 

In the experimental set-up, a number of limitations occurred which 
could be improved in further studies. First, only one fertiliser rate was 
used in the field experiments, likely affecting the observed recovery as 
this depends partly on the level of nutrients applied (Zingore et al., 
2007). Using a number of nutrient application levels, our recovery 
fractions could be validated for a wider range. This is especially relevant 
when considering current farming practices as fertiliser rates generally 
applied by farmers are lower than the amount of nutrients applied in our 
study (Liverpool-Tasie et al., 2017). Second, the experiments were 
conducted in two seasons, while a wider range of weather conditions 
could have assured a wider application of the boundary line model 
(Shepherd et al., 2018). This will be more important in very wet or very 
dry years as the conducted trials took place in relatively normal years, 
while potential crop yields might be strongly reduced in very dry years. 
Lastly, while unavoidable to the large scale of the study, multiple enu
merators were used, potentially adding to the observed variation in 
fertiliser response (Vanlauwe et al., 2016). 

4.3. Recommendations for further research 

This study has been the first to estimate attainable maize yields based 
on biophysical factors such as soil OC, clay content, silt content and soil 
pH (Fig. 8). Even though attainable yields were predicted reasonably 
well based on biophysical factors, only partial explanation has been 
given for the causes in the variation of the remaining yield responses, as 
we were only able to include plant density as a factor in our analysis. 
This calls for further research into predicting crop yields under different 
limiting conditions. Other management factors could include sowing 
dates (Laux et al., 2010), weed and pest management or historic field 
management. If the previous season included manure use or cultivation 
of legumes, maize yields could have benefited from residual nutrient 
effects (Franke et al., 2018; Njoroge et al., 2019). 

5. Conclusions 

One among many reasons proposed for the low levels of fertiliser 
usage in sub-Saharan Africa is the poor tailoring of fertiliser recom
mendations, which are agronomically and/or economically suboptimal. 
Raising fertiliser usage in the region will require, in part, better fertiliser 
recommendations which, in turn, will require more accurate assess
ments of likely yield responses in different locations and management 
contexts. The large uncertainty and variation in yield estimates observed 
in this study call for modest claims on potential for calibration and 
validation of yield response models such as QUEFTS, if only biophysical 
data is available. 

We show that, instead of predicting an expected response to a given 
fertiliser application in a certain field, an upper bound can be given of 
attainable yield, if farmers do everything else right in terms of other 
management. This latter option is a more cautious and sensible 
approach. Predicting attainable yields only, given certain soil conditions 
and fertiliser application, acknowledges the large variability observed in 
the field. However, this approach could easily be extended to predictions 
of yield responses at different levels – e.g. the 25th, 50th or 75th percentile 
of the yield distribution – which may correspond to differing levels of 
farming ability and/or resource endowments that constrain manage
ment decisions. This opens up a flexible framework for generating 
context-specific fertiliser recommendations, compared to those which 
assume ‘perfect management’ and no limiting factors other than nutrient 
supply. Our proposed methodology may therefore support improvement 
of scenario analyses, foresight studies or economic cost benefit analyses 
on nutrient management in tropical smallholder farming systems. In the 
current era of rapidly emerging opportunities for digital agriculture in 
developing regions, the scope for improved fertiliser application rec
ommendations to have impact at scale is increasing. Providing more 
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realistic recommendations will enhance the return on investments for all 
stakeholders involved, especially in the long run. 
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Appendix A 

Additional plots on step 1 of the QUEFTS model 
A correlation was found between silt + clay content of the soil, soil 

OC and soil N (Fig. A1A ). However, when soil N was related against 
apparent N supply no correlation was found (Fig. A1B). 

Apparent P supply significantly increased with increasing soil 
available P (Fig. A2). 

Fig. A1. Soil N (g kg− 1) against silt + clay content (%) (A) and apparent N supply (kg ha− 1) against soil N (g kg− 1). Different colours of the dots represent different 
levels of soil OC (in g kg− 1). Dot dashed lines indicate significant regression lines estimated with the linear mixed effects model with different levels of soil OC. 

Fig. A2. Apparent P supply (in kg ha− 1) against soil available P (in ppm). The dot dashed line indicates the regression line estimated with a linear mixed ef
fects model. 
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Appendix B 

N, P and K supply validation plots using standard linear regression 
(B1) and quantile regression (B2). 

Fig. B1. Apparent nutrient supply of N, P and K against predicted nutrient supply of N, P and K respectively (in kg ha− 1). In the upper graphs (A, B, C) nutrient supply 
is predicted with QUEFTS equations. In the middle graphs (D, E, F) nutrient supply is predicted with equations calibrated by Shehu et al. (2019). The lower graphs (G, 
H, I) indicate predictions with equations found in this study. The solid black lines indicate the 1:1 line. The dot dashed lines indicate the regression lines. 
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Appendix C 

Relation between yield and plant density. 
Fig. C1 
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