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Recently, a 4-index generalization of the Einstein theory is proposed by Moulin [1]. Using this
method, we find the most general 2-index field equations derivable from the Einstein-Hilbert action.
The application of Newtonian limit, the role of gravitational coupling constant and the effects of
the properties of ordinary energy-momentum tensor in obtaining a 4-index gravity theory have been
studied. We also address the results of building Weyl free 4-index gravity theory. Our study displays
that both the Einstein and Rastall theories can be obtained as the subclasses of a 4-index gravity
theory which shows the power of 4-index method in unifying various gravitational theories. It is also
obtained that the violation of the energy-momentum conservation law may be allowed in 4-index
gravity theory, and moreover, the contraction of 4-index theory generally admits a non-minimal
coupling between geometry and matter field in the Rastall way. This study also shows that, unlike
the Einstein case, the gravitational coupling constant of 4-index Rastall theory generally differs from
that of the ordinary 2-index Rastall theory.

I. INTRODUCTION

In Riemannian geometry, the geometrical information
of a manifold is encoded into the forth-order Riemann
tensor, while the general relativity (GR) includes the sec-
ond rank divergence-less tensors [2, 3]. Remember that
the Einstein tensor is a combination of the Ricci tensor
and its scalar constructed by contracting the Riemann
tensor.

Based on the Einstein hypothesis, whenever the space-
time is curved in the presence of an energy source, the
amount of curvature is determinable by the total energy-
momentum tensor of source filling the background. In
fact, whenever the GR field equations are solved, then
metric and thus the Riemann tensor are also determined,
and we can find more information about spacetime by
studying the Riemann tensor and its evolution. This
approach is in fact a secondary way to study the Rie-
mann tensor in which we do not know anything about the
probable constraints on this tensor and its evolution. It
means that GR does not directly say us anything about
the evolution of this curvature. Thus, a proper theory
should help us in obtaining the Riemann tensor and its
evolution in a direct way and without any intermediary.

Theoretically, another primary way to directly find
some information about the evolution of geometry may
also be to establish a relation between the changes of
geometry and that of the energy-momentum source fill-
ing it. In GR, at first glance, such a relation is exist
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between the derivatives of Ricci scalar (or Ricci tensor)
and the trace of energy momentum tensor. But, this is a
secondary relation directly obtained from the field equa-
tions which are the fundamental and basic equations in
GR. Therefore, another basic assumptions are needed to
build a theory which lets us directly study the evolution
of geometry.

On the other hand, if one relaxes the energy-
momentum conservation law by considering a mutual in-
teraction between the geometry and matter field [4–11],
then it can at least theoretically provide for us an in-
dependent basic to understand this issue that how the
geometry is curved and its curvature evolves. Rastall
theory is a leading work in this sense [4] which proposes
a fundamental basic equation between the evolution of
geometry and the changes of energy source, in a way it
is ahead of its corresponding field equations. In fact,
field equations in Rastall hypothesis, a modified GR, are
secondary equations. Although this is an old theory,
its Lagrangian is still under debate [9–13]. It is worth-
while mentioning that recent observation indicate that
the gravitational waves are propagated with the light ve-
locity [14], a result respected by both the Einstein and
Rastall gravity [2, 15], and severely restricts gravitational
theories as well as dark energy models [14]. Rastall grav-
ity is inserted in the more general framework of extended
gravity [19 - 24], which is today considered an intrigu-
ing tapestry to challenge the big puzzles of the standard
model of cosmology, starting from the famous dark en-
ergy [25, 26] and dark matter [27, 28] problems. We
emphasize that all of the potential alternatives to gen-
eral relativity must be viable theories. This means that
alternative theories must be consistent with Einstein’s
equivalence principle and, in turn, they must be met-
ric theories [23]. In fact, Einstein’s equivalence princi-
ple is today supported by an unchallengeable empirical
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evidence [23], being considered at the level of an impor-
tant law of Nature. Another request is that alternative
theories must pass the solar system tests. As a conse-
quence, deviations of extended theories from standard
general relativity must be weak [19, 20]. Remarkably,
the nascent gravitational wave astronomy [29] could be a
useful tool in order to discriminate among Einstein grav-
ity, Rastall gravity and other potential alternative theo-
ries [15, 19, 20]. In fact, important differences between
general relativity and extended theories can be pointed
out in the linearized theory of gravity [19, 20].
Recently, a 4-index generalization of general relativ-

ity has been introduced to relate the Riemann tensor
to the energy-momentum sources filling the spacetime
[1]. Therefore, it is a theory may directly help us in
modelling the evolution of geometry and thus its curva-
ture. In this approach, the gravitational field contribu-
tion to the total energy-momentum tensor is separated
from other sources, and it is related to the Weyl tensor
defined as [3]

Cijkl = Rijkl −
1

n− 1
(gijkpR

p
l + gijplR

p
k)

+
1

n(n− 1)
gijklR, (1)

and is zero for conformal flat spacetimes.
Therefore, the view of Ref [1] claims that the gravita-

tional field has not any effects in conformal flat space-
times which are indeed curved. If we accept the Einstein
idea that spacetime is curved by energy sources, then this
property of Weyl tensor will establishes an inconsistency
with his idea. It is because conformal flat spacetimes
are in fact curved whereas their Weyl tensor is zero. In
fact, if physics is formulated in terms of this tensor, then
some information will be disappeared whenever we face
with conformal flat spacetimes such as the FRW geome-
try. It means that, in this situation, we should probably
establish another set of equations to get the missed infor-
mation meaning that the theory is incomplete. Briefly,
this tensor does not has a unique behavior in front of
the existence of curvature. Hence, although Weyl tensor
includes some information about the geometry, due to
its dual behavior against the existence of curvature, one
may argue that a true 4-index generalization of Einstein
theory should not include Weyl tensor.
Based on the above argument, we are going to show

that the 4-index approach, introduced in [1], may provide
a Lagrangian description for the Rastall theory. We are
also interested in studying the role of gravitational cou-
pling constant, the application of Newtonian limit and
the results of building a Weyl tensor free gravitational
field equations in this approach.
The paper is organized as follows. In the next section,

after reviewing the lagrangian formalism in both 2 and 4-
index notations, and addressing the role of gravitational
coupling constant, we build the general 4-index gravita-
tional field equations extractable by the Einstein-Hilbert

Lagrangian. The conditions required for obtaining Ein-
stein and Rastall theory have also been studied. Sec-
tion (III) includes our surgery on the obtainable 2-index
theories from this approach by generalizing the gravita-
tional action used in the second section. The last section
is devoted to a summary and concluding remarks.

II. ACTION, ITS VARIATION, 2-AND 4-INDEX
THEORIES

Before focusing on our main aim, we review some fea-
tures of the Lagrangian formalism of general relativity in
(n+ 1)-dimension.

A. (n+ 1)-dimensional general relativity

The Einstein-Hilbert action is

I = IG + Im, (2)

in which

IG = − 1

2κn

∫

R
√
−g dn+1x, (3)

is the gravitational action, Im denotes the matter action
[3], and

κn =
2(n− 1)πn/2Gn+1

(n− 2)(n2 − 1)!
, (4)

is the (n+1)-dimensional Einstein coupling constant [17,
18]. Here,

Gn+1 = 2π1−n/2Γ(
n

2
)
c3ℓn−1

p

~
, (5)

is the (n + 1)-dimensional Newtonian gravitational con-
stant [16]. In this manner, applying the action principle
to Eq. (2), the Einstein field equations are achieved as

Gµν = κnTµν . (6)

As a check, for n = 3, we can easily find

G3+1 = G4 = 2π−1/2Γ(
3

2
)
c3ℓ2p

~
=

c3ℓ2p

~
≡ G,

κ3 = 8πG ≡ κ (7)

IG = − 1

2κ

∫

R
√
−g d4x,

which finally leads to Gµν = κTµν .
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The Newtonian limit

For a space with n dimension, the Poisson equation,
corresponding to the Newtonian potential φ and energy
density ρ, is written as [2, 17, 18]

∇2φ =
2Gn+1π

n/2

(n2 − 1)!
ρ. (8)

Moreover, the Newtonian limit is evaluated by using the
[2]

R00 = ∇2φ, (9)

relation, for which Eq. (6) implies [2]

R00 =

(

n− 2

n− 1

)

κnρ, (10)

where in accordance with the properties of the Newto-
nian limit, the pressure contribution has been ignored [2].
Now, combining the above equations with each other, one
can easily reach at Eq. (4). Thus, if a 4-index theory of
gravity is available, then contracting the field equations
and by using the resulting 2-index field equations, one can
find R00 and thus the gravitational coupling constant of
the primary 4-index theory.

B. 4-index notation, general remarks and the role
of gravitational coupling constant

Since R = gjlgmnRmjnl, by defining the 4-index metric
gijkl as gijkl = gikgjl − gilgjk which has the same sym-
metry as that of the Reimann tensor [1, 2], one obtains

R = gikgjlRijkl =
1

n
gikgjlgijkpR

p
l (11)

=
1

n
gikgjlgijplR

p
k =

1

n(n+ 1)
gikgjlgijklR,

which helps us in generalizing Eq. (3) as [1]

IG = − 1

2ηn

∫

gikgjl(A+B + C +D)
√
−g dn+1x, (12)

where

A = aRijkl (13)

B = mgijkpR
p
l

C = mgijplR
p
k

D = dgijklR,

and a, m, and d are unknown Lagrangian coefficients
evaluated later. In Ref [1], for both the gijkpR

p
l and

gijplR
p
k terms, author assumed the same coefficient (m).

But, since gijkpR
p
l 6= gijplR

p
k, their coefficients can be

different in general. We will study some consequences of
this case in the next section.

Now, using Eq. (11), one can see Eq. (3) is recovered
if we have either

n[2m+ (n+ 1)d] + a = 1

ηn = κn, (14)

or

ηn ≡ κn

α
, (15)

where α ≡ 1
n[2m+(n+1)d]+a . While the first case claims

that the gravitational coupling constant in 4-index gen-
eralization of Einstein theory (ηn) is the same as κn, the
second case indicates that ηn differs from κn. Therefore,
the definition of gravitational coupling constant has a key
role in getting a 4-index theory.

Finally, in similarity with the definition of Ricci tensor
(Rjl = gikRijkl), and just the same as Ref [1], we assume
that there is a 4-index generalized energy-momentum
tensor Tijkl satisfying the Tjl = gikTijkl condition, in
which Tjl is the ordinary 2-index energy-momentum ten-
sor representing all sources filling the background and
obtainable by applying the action principle to the mat-
ter Lagrangian, i.e. [1]

2δIm =

∫

Tjlδg
jl√−g dn+1x (16)

=

∫

Tijklg
ikδgjl

√
−g dn+1x.

Action variation and 4-index theory

Following the method of Ref [1], the variation of ac-
tion (12) leads to

δIG = − 1

2ηn

∫

gik
[

(m(n− 1) + a)δRik + δgjl
(

aRijkl +m(gijkpR
p
l + gijplR

p
k)

+(d− a+ 2mn+ dn(n+ 1)

2n
)gijklR

)

+(m+ nd)δ(gikR)
]√

−g dn+1x. (17)

The integral of gikδRik will be vanished [1], and the coef-
ficient of the δ(gikR) will be zero wheneverm = −dn, the
primary and simple case studied in [1]. In this manner,
combining this result with Eq. (16), one reaches at
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Gijkl ≡
[

aRijkl − nd(gijkpR
p
l + gijplR

p
k)

+(
dn(1 + n)− a

2n
)gijklR

]

= ηnTijkl. (18)

Now, using Eq. (1), we can rewrite this equation as

Gijkl =
[

aCijkl + Fijkl

]

= ηnTijkl,

Fijkl =
a− n(n− 1)d

n− 1
(gijkpR

p
l + gijplR

p
k) (19)

+
n+ 1

2n(n− 1)
[dn(n− 1)− a]gijklR.

The Weyl free case

The above result indicates that the field equations will
be free of Weyl tensor whenever a = 0 leading to

Gijkl = F
(a=0)
ijkl = ηnTijkl. (20)

In this manner, since we assumed that Tjl includes all
sources filling the background, we do not need additional
terms to cancel the Weyl tensor. Additionally, although
Fijkl is completely determinable by the Ricci tensor and
metric, we cannot find the 4-index energy-momentum
tensor unless we have relation between Tjl and Ricci ten-
sor meaning that we should decide about the desired 2-
index theory.

General Relativity

The contraction of Eq. (20) leads to

Gjl =
ηn

n(1− n)d
Tjl, (21)

nothing but the Einstein field equations with the cou-
pling constant ηn

n(1−n)d . Now, comparing this equation

with (6), we can easily see that the results of (II A) is
also valid here for ηn

n(1−n)d = κn, a result also compatible

with Eq. (15). Therefore, this analysis cannot give us the
values of ηn and d meaning that their values should be
evaluated from other parts. In fact, this analysis shows
that the Newtonian limit and the d = −m

n constraint are
enough to recover the Einstein field equations whenever
the 4-index equations are Weyl free. As an example, if
ηn ≡ κn, then we should have n(n − 1)d = −1 in full
agreement with Eq. (14) and Ref [1].
In order to find Tijkl and ηn, we remind that 4-index

energy-momentum tensor should meet the Tjl = gikTijkl

condition. One can use Eqs. (20) and (21) in order to see
that only if n(1− n)d = 1 and

Tijkl = (22)

1

n− 1
(gijkpT

p
l + gijplT

p
k)−

1

n(n− 1)
gijklT,

then the Tjl = gikTijkl condition is met in agreement
with Ref [1]. In this situation, from the ηn

n(1−n)d = κn

relation, we automatically reach at ηn = κn. Moreover,
inserting the above results into Eq. (20), we easily get [1]

Bijkl ≡ F
(a=0,n(1−n)d=1)
ijkl = − n+ 1

2n(n− 1)
gijklR

+
1

n− 1
(gijkpR

p
l + gijplR

p
k) = κnTijkl. (23)

which meets [1]

Gjl = gikBijkl . (24)

We see that the Tjl = gikTijkl condition together with
the Newtonian limit automatically give us the value of d
leading to ηn = κn. Now, since the energy-momentum
conservation law is met by Tjl in Einstein theory, one can
obtain

∇iT
i
jkl = (25)

1

n− 1

[

(Tjl;k − Tjk;l)−
1

n
(gjlT,k − gjkT,l)

]

.

Bearing the Einstein field equations and Eq. (20) in mind
and using the above result, one finds

∇iT
i
jkl =

1

κn
∇iG

i
jkl = (26)

1

κn(n− 1)

[

(Rjl;k −Rjk;l) +
1

2n
(gjkR,l − gjlR,k)

]

,

which is not always zero [1]. Therefore, this study shows
that while there is no non-minimal mutual interaction be-
tween the geometry and matter fields in 2-index general
relativity (or equally T i

j;i = 0), its 4-index generaliza-
tion admits a non-minimal coupling between them mean-
ing that the divergence of the 4-index energy-momentum
tensor is not always zero.

C. Some notes on the m 6= −nd case

Here, we want to address the results of the m 6= −nd
case. Let us focus on the last term of Eq. (17). In fact,
whenever m 6= −nd, then since gikgik = n+ 1, we have

gikδ(gikR) = δ(gikgikR)− (δgik)Rgik

= (n+ 1)δR−Rgjlδg
jl, (27)
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Now, because δR → Gjlδg
jl = gikBijklδg

jl, and gjl =
1
ngijklg

ik, the last term of Eq. (27) leads to

gikδ(gikR) = gik[(n+ 1)Bijkl −R
1

n
gijkl]δg

jl, (28)

apart of the usual surface term which is the result of the
δR term and will be zero at infinity [1–3]. In this manner,
bearing Eq. (1) in mind, one finally reaches at

Gijkl ≡
[

aCijkl + Fijkl

]

+ (m+ nd)(n+ 1)Bijkl

= ηnTijkl, (29)

Fijkl = (m+
a

n− 1
)(gijkpR

p
l + gijplR

p
k)

−(γ +
a

n(n− 1)
)gijklR.

γ ≡ (dn+ 2m)(1 + n) + a

2n
.

Now, contracting this equation (gikGijkl = ηng
ikTijkl =

ηnTjl), we find out

Gjl + ΞnλRgjl = ΞnTjl,

λ =
m(n+ 1)− 2γn+ a

2ηn
, (30)

Ξn =
ηn

a+ n(m+ nd(n+ 1))
,

leading to R(4Ξnλ − 1) = ΞnT , the trace of field equa-
tions. The above field equations are indeed the Rastall
field equations in which λ and Ξn denote the Rastall
constant and Rastall gravitational coupling constant, re-
spectively [4]. It is also worthwhile mentioning that the
T i

j;i = 0 condition is not met by the Rastall theory claim-
ing that the geometry and matter fields are coupled with
each other in a non-minimal way [4, 5]. It should be
noted that since we face with Rastall field equations in
which Ξn is the gravitational coupling constant, replac-
ing κn with Ξn in Eq. (15), one can reach the above
results. λ and Ξn are also connected to each other by
considering the Newtonian limit of the Rastall theory
[4]as Ξn

4Ξnλ−1 (3Ξnλ − 1
2 ) = κn

2 . This result can also be

obtained by following the recipe introduced in (IIA). It fi-

nally leads to ηn = 4m−n(8γ+d(n+1))+2a
10m−n(12γ+d(n+1))+5aκn which clearly

indicates that we do not have always ηn = κn [4]. The
Newtonian limit indeed helps us in finding relation be-
tween Ξn with G.
It is also easy to check that for m = −nd, we get λ = 0

and thus the Einstein field equations are recovered (for
which Ξn = κn), as a desired result in full agreement
with previous achievements. Therefore, in this manner,
the contraction of the 4-index field equations automat-
ically presents a mutual interaction between geometry
and matter field, i.e. T ;ν

µν = λR,µ.
Field equations (29) will also become Weyl free when-

ever a = 0. In this manner, bearing the recipe led to

Eq. (22) in mind, one can use Eq. (30) and the trace of
field equations to find Bijkl and Fijkl which finally leads
to Tijkl.

III. A MORE GENERAL LAGRANGIAN

Here, after introducing a generalization to Eq. (13),
we introduce another 4-index generalization for Rastall
theory based on the m = −nd case. Some results of the
Weyl tensor free theory are also discussed.

A. Action and its variation

As we addressed previously, since gijkpR
p
l 6= gijplR

p
k,

their coefficients can be different in general. Here, con-
sidering different coefficients for these terms, we are go-
ing to study some consequences of the resulting action.
Let us consider a more general form for action (12) by
generalizing Eq. (13) as

A = aRijkl , (31)

B = mgijkpR
p
l,

C = cgijplR
p
k,

D = dgijklR,

where c (the same as a, m, and d) is an unknown La-
grangian coefficient. In this situation, Eqs. (14) and (15)
are modified as

n[m+ c+ (n+ 1)d] + a = 1

ηn = κn, (32)

and

ηn ≡ κn

β
, (33)

in which β ≡ 1
n[m+c+(n+1)d]+a , respectively. The action

variation also leads to

δIG = − 1

2ηn

∫

gik
[

(cn−m+ a)δRik + δgjl
(

aRijkl +mgijkpR
p
l + cgijplR

p
k (34)

+(d− 1

2nβ
)gijklR

)

+ (m+ nd)δ(gikR)
]√

−g dn+1x,

and thus

Gijkl ≡
[

aRijkl − ndgijkpR
p
l + cgijplR

p
k

+(
n(d− c)− a

2n
)gijklR

]

= ηnTijkl, (35)
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where, as the previous section, we considered the m =
−nd case for which the δ(gikR) term is eliminated. Now,
bearing the Weyl tensor (1) in mind, we can finally reach

Gijkl =
[

aCijkl + Fijkl

]

= ηnTijkl, (36)

Fijkl = f1gijkpR
p
l + f2gijplR

p
k + f3gijklR.

Here,

f1 ≡
a− n(n− 1)d

n− 1
, f2 ≡ a+ c(n− 1)

n− 1
,

f3 ≡
n(d− c)(n− 1)− a(n+ 1)

2n(n− 1)
, (37)

and it is easy to see that Eq. (19) is recovered at the
appropriate limit of c = −nd.

B. Rastall theory

In the general framework of extended gravity, which
has been discussed in the Introduction of this paper, a re-
newed interest in the literature has been recently gained
by the theory proposed by P. Rastall in 1972 [4]. In
fact, Rastall theory of gravity presents various good be-
haviors. It seems consistent with the Universe age and
with the Hubble parameter [30], with the helium nucle-
osynthesis [31] and with the gravitational lensing phe-
nomena [32]. It permits an alternative description for
the matter dominated era with respect to general rela-
tivity [33]. Such observational evidences enabled cosmol-
ogists to study the various cosmic eras in the framework
of Rastall gravity [34 - 39]. In addition, Rastall grav-
ity should not present the entropy and age problems of
standard cosmology [40]. As we previously stressed, the
fundamental issue concerning Rastall gravity is the pres-
ence of a non-divergence-free energy-momentum. For the
sake of completeness, we recall that also the so called
curvature-matter non-minimal theory of gravity shows a
similar behavior because also in this theory the matter
and geometry are coupled to each other in such a way
that the ordinary-energy momentum conservation law is
not met [5–7, 40–42].
Now, let us restart our discussion. In general, since

gikCijkl = 0, by contracting Eq. (36), we can obtain

Gjl + ΞnλRgjl = ΞnTjl, (38)

as the most general obtainable 2-index field equations.
As the previous section, Ξn and λ denote the Rastall
constant and Rastall gravitational coupling constant, re-
spectively, but here, they are evaluated as

Ξn ≡ ηn

a− n2d− c
, (39)

λ ≡ 1− n

2ηn
[c+ nd].

Once again, we see that the contraction of 4-index theory
guides us in general to a non-minimal interaction between
geometry and matter fields in the Rastall way.
We can also easily see that the c = m = −nd case

(or equally λ = 0) leads to the Einstein field equa-
tions. Therefore, as an expected result, the Einstein case
can be considered as the subclass (c = m = −nd) of
the Lagrangian introduced here (31), and thus this sec-
tion. The Newtonian limit of the Rastall theory implies

Ξn

4Ξnλ−1 (3Ξnλ − 1
2 ) = κn

2 [4], combined with Eq. (39)

to obtain ηn = (a−n2d−c)[c(3−2n)+d(2−n)−a]
c(4−3n)+dn(3−2n)−a κn indicating

that we do not have always ηn = κn. Therefore, even for
m = −nd, the 4-index formalism, introduced in Ref [1],
can provide a Lagrangian description for Rastall theory
[9, 12, 13].

The Weyl free case (a = 0)

In this manner (a = 0), ane can finally find Tijkl by
using Eq. (38) and the definition of Fijkl as

Tijkl = − [f1gijkpT
p
l + f2gijplT

p
k − f4gijklT ]

n2d+ c
, (40)

where

f4 ≡ 1

4Ξnλ− 1

(2c+ n(d− c)

−2(n2d+ c)
[f1 + f2]

a=0 − fa=0
3

)

(41)

If we want to obtain the same Tijkl as that of the Ein-
stein case (22), then the Lagrangian coefficients are con-
strained by

fa=0
1 = fa=0

2 = nf4 = −n2d+ c

n− 1
, (42)

leading to c = −nd. As we saw in previous section, the
m = c = −nd case can only cover the Einstein field equa-
tions. Therefore, although both the Rastall and Einstein
theory has the same Tjl (16), and they can be classified
as the subclasses of one Lagrangian with the same Tjl

meeting Eq. (16), their 4-index energy-momentum ten-
sor is different. A difference which is the result of the
existence of a non-minimal mutual interaction between
the geometry and matter fields in Rastall theory.
It is also worthwhile mentioning that the Tjl = gikTijkl

condition is satisfied whenever we have c = nf4 leading
to c = dn

n−2 . Inserting this result into Eq. (39), one easily

finds Ξn = ηn(2−n)
nd(n(n−2)+1) and λ = nd(n−1)2

2ηn(2−n) . This achieve-

ment indicates that the gravitational coupling constant of
4-index Rastall theory (ηn) differs from that of the ordi-
nary 2-index Rastall theory (Ξn), a result in agreement
with subsection (II C). Thus, these coupling constants
will be the same only if we have d = 2−n

n(n(n−2)+1) leading

to c = 1
n(2−n)−1 .
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Just the same as the Einstein case, Eq. (40) indicates
that we have not always ∇iT

i
jkl = 0, meaning that there

is also a non-minimal coupling between the geometry and
matter fields in 4-index generalization of Rastall theory,
a result in accordance with the Rastall hypothesis [4]. In
fact, since T i

j;i = λR,j =
Ξnλ

4Ξnλ−1T,j in Rastall theory [4],

by bearing the definition of Fijkl in mind (36), and com-
bining the energy-momentum conservation law of Rastall
theory with Eqs. (36) and (40), one can easily check that

∇iG
i
jkl = ηn∇iT

i
jkl. (43)

Indeed, since a = 0 leading to Fijkl = ηnTijkl, the va-
lidity of this result has been guaranteed. Therefore, just
the same as the original Rastall theory [4], the energy-
momentum conservation law is not always satisfied in the
4-index generalization of this theory.

IV. CONCLUSION

In summary, our survey shows that although the d =
−m

n constraint is sufficient to recover the field equations
of general relativity (Eqs. (24) and (21)), the fulfilment
of the Tjl = gikTijkl requirement necessitates ηn = κn. It
has been obtained that ∇iT

i
jkl 6= 0 in general, meaning

that a non-minimal coupling between geometry and mat-
ter fields is automatically allowed in 4-index approach, a
result independent of the divergence amount of energy-

momentum tensor (T ;l
jl ). In addition, we also found out

that the contraction of the 4-index field equations may in
general bring us to a non-minimum interaction between
geometry and matter field. It has also been obtained
that, unlike the Einstein case, the gravitational coupling
constant of 4-index Rastall theory (ηn) generally differs
from that of the ordinary 2-index Rastall theory (Ξn).
Besides, we addressed some general expressions for 4-

index energy-momentum tensor, depending on the values
of the Lagrangian coefficients, which can reduce to those
of the Einstein and Rastall cases by choosing their related
coefficients. Therefore, it should be noted that the 4-
index energy-momentum tensor of Rastall differs from
that of Einstein, while Tjl is evaluated from a unique

action principle in both theory (see Eq. (16) and Ref [11]).
This difference is in line with the difference between the
2-index Rastall and Einstein theories.

We also found out that Rastall field equations can be
obtained from Lagrangian (12) if m 6= −nd, a result
claiming that both the Rastall and Einstein theory are
subclasses of one general Lagrangian. On the other hand,
in the third section, generalizing the Lagrangian (12), we
could again get a 4-index generalization for the Rastall
theory and thus a Lagrangian description of this theory.
Moreover, although in our calculations m = −nd, we
saw that the results of section (II) can be obtained as
the special case (c = −nd) of this section. This result
also indicates that both the Einstein and Rastall theory
can be considered as the subclasses of one 4-index theory.
It is worthwhile to remind that i) the Riemann tensor

has a crucial role in the Riemannian geometry, and ii)
the key point in writing the Lagrangian (12) is Eq. (11)
giving us the some possibilities of writing R using the gik

and gijkp metrics together with the Riemann tensor and
its contracted form (the Ricci tensor). In the Riemannian
geometry, there are also another curvature invariants
built by the Reimann tensor such as the Kretschmann
scalar [2] and the Carminati-McLenaghan invariants [43].
Hence, writing R (or equally, the Lagrangian of the ge-
ometrical part of the Einstein theory) in terms of other
invariants, and by using the gijkp notion, one may get
another Lagrangians instead of (12). In this manner, one
may find another 4-index field equations which should
cover the Einstein field equations after contraction, and
also the Newtonian gravity after taking the weak field
limit. It was not our aim to study such possibilities, and
can be considered as an interesting subject for the future
works.
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