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a Institut de Mathématiques et de Sciences Physiques, 01 BP 613, Porto-Novo, Bénin
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In this paper we search for dynamical traversable wormhole solution in the modified f(T ) theory of
gravity, T being the torsion scalar. For such wormhole, the time dependence is inserted in the static
traversable wormhole metric of Morris and Thore. Two set of tetrads are adopted: the diagonal
and the non-diagonal tetrads. The diagonal set of tetrads constrains and reduces f(T ) model to
teleparallel theory where usual solutions have been found. With diagonal set of tetrads, free from the
teleparallel theory constraint, our results show that the existence of traversable wormhole is possible
only for non-dynamical spacetime metric, i.e, static traversable wormhole solutions. Moreover we
take into account energy condition analysis and the results show that the violation of NEC is not
determinant for existence of static traversable wormhole solutions.

PACS numbers: 04.50.Kd, 98.80.Jk.

I. INTRODUCTION

Wormhole is known as a hypothetical object behaving like a tunnel or bridge that provides a connection between
two different universes. The main challenge about the existence of wormhole is generally focused on the energy
conditions and appears as an interesting topic is gravitation. Traversable wormhole concept has first introduced by
Morris and Thore [1]. It is then important to point out that this idea is quite different from the previous concept
of Einstein-Rosen bridge [2] and also was unlike the concept of charge-carrying microscopic wormholes developed
by Wheeler [3]. Various works have been performed in this way such, dynamical wormhole solutions [4], brane
wormholes [5], traversable wormholes [6], in the optic to minimize the violation of the null energy condition (NEC).
Specifically, the study of wormhole in the context of modified theories of gravity has received more attention. The
wormhole geometries has been performed in f(R) gravity in [7], where some exact solutions according to captivated
shape-function have been found. Still in f(R) theory of gravity, static wormhole solution were explored where it is
concluded that wormhole solution is possible in certain regions for only barotropic matter case [8]. In the context
of f(R, T ) theory of gravity, static spherically wormhole solutions have been discussed in [9]. We characterize static
wormhole by the metric (11) where Φ(r) is known as red-shift function essentially important for the determination of
the event horizon [11]. The function B(r) is called the shape function and is representative of the spatial shape of the
wormhole. It is well known in the literature that wormhole geometries is dictated by the red-shift and shape functions
through the spacetime metric, while the field equations are used to evaluate the corresponding matter content. In
general the matter content violates the NEC [12–18] and this violation is essentially due to its topology [19, 20]. The
most interesting feature for the wormhole is the traversability characterized by the absence of horizon, meaning that
the function e2φ(r) is finite everywhere, and the condition B(r0) = r0 holds at the throat r = r0.
Our goal in this paper is to search for relativistic wormholes (dynamical wormhole) in the framework of f(T ) theory

of gravity. This kind of wormhole comes from the inclusion of the scale factor in the Morris-Thorne metric evidently
known as static wormhole spacetime metric. For this kind of metric, and in general, including matter content, their
existence satisfies weak energy condition (WEC) and dominate energy condition (DEC) [21–24]. Several works based
on traversable wormhole have been performed in other king of modified theories of gravity; in f(R) theory of gravity
[25, 26], in f(G) theory of gravity [27–31], and interesting results have been found. For our purpose we consider the
dynamical traversable wormhole metric and search for possible physical solutions where we make use for both diagonal
and non-diagonal set of tetrads. For diagonal tetrads, f(T ) model is constrained to Teleparallel where there is no
more interesting solution. Attention is therefore attached to non-diagonal set of tetrads. Our results show that the
possible traversable wormhole solutions far from the Teleparallel theory, i.e, fTT (T ) 6= 0, are favored by absence of
time dependence of the metric, meaning that only static traversable wormholes are possible in f(T ) theory of gravity.
The paper is organized as follows: the Sec.II is devoted to the generality on f(T ) theory of gravity and the

introduction to the wormhole metric, where we search for traversable wormhole solution within diagonal set of tetrads.
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In Sec.III, we attach attention to a set of non-diagonal tetrads and search for traversable wormhole solutions. The
analysis about energy conditions is performed in Sec.IV, and the conclusion in Sec.V.

II. GENERALITY ON f(T ) GRAVITY AND WORMHOLE METRIC

We start by the mathematical concept of f(T ) gravity based on the Weitzenbock’s geometry. The Latin subscripts
describe the elements of the tangent space to the manifold (spacetime), while the Greek ones are directly related to
the spacetime. For a general spacetime metric, we express the line element as

ds2 = gµνdx
µdxν . (1)

The metric (1) can be projected onto the tangent space to the manifold such that the line element is written using
the so-called tetrad matrix, as

ds2 = gµνdx
µdxν = ηijθ

iθj , (2)

dxµ = e µ
i θi , θi = ei µdx

µ , (3)

where ηij = diag[1,−1,−1,−1] and e µ
i ei ν = δµν or e µ

i ejµ = δji . This leads to
√−g = det

[

ei µ
]

= e. The spacetime
can now be described by using the tetrad matrix, where Weitzenbock’s connections are defined as

Γα
µν = e α

i ∂νe
i
µ . (4)

From the definition (4), it is obvious to note that the spacetime’s curvature vanishes and only the torsion and its
related quantities have contribution for this geometry. The antisymmetric property of the connection favors the
torsion tensor, whose components are

Tα
µν = Γα

νµ − Γα
µν = e α

i

(

∂µe
i
ν − ∂νe

i
µ

)

. (5)

The related tensors, the contorsion and the tensor S, are expressed through their components by

Kµν
α = −1

2
(T µν

α − T νµ
α − T µν

α ) , (6)

S µν
α =

1

2

(

Kµν
α + δµαT

βν
β − δναT

βµ
β

)

. (7)

The torsion scalar T can now be expressed using (5)-(7), as

T = Tα
µνS

µν
α . (8)

We define the action of the f(T ) gravity as

S[eiµ,ΦA] =

∫

d4x e

[

1

16π
f(T ) + LMatter (ΦA)

]

, (9)

where units G = c = 1 have been used and the ΦA denote the matter fields. Considering the action (9) as a functional
of the tetrads ei µ and the fields ΦA, and vanishing its variation with respect to eiν , i.e. the principle of minimum
action, one gets the following equation of motion [10]

S νρ
µ ∂ρTfTT +

[

e−1eiµ∂ρ (ee
α

i S νρ
α ) + Tα

λµS
νλ

α

]

fT +
1

4
δνµf = 4πT ν

µ , (10)

where T ν
µ denotes the stress tensor, fT = df(T )/dT and fTT = d2f(T )/dT 2.

The general wormhole metric is assumed as [11]

ds2 = e2Φ(r)dt2 − dr2

1−B(r)/r
− r2

(

dθ2 + sin2 θdφ2
)

. (11)

For the wormhole to be traversable and dynamic, the metric to be assumed in this paper is the flat Friedmann-
Robertson-Walker (FRW), whose line element is

ds2 = dt2 −A2(t)

[

dr2

1−B(r)/r
+ r2

(

dθ2 + sin2 θdφ2
)

]

. (12)
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For an anisotropic fluid, the energy momentum tensor is given by the expression

T ν
µ = (ρ+ pt)uµu

ν − ptδ
ν
µ + (pr − pt) vµv

ν , (13)

where uµ is the four-velocity, vµ the unitary space-like vector in the radial direction, ρ the energy density, pr the
pressure in the direction of uµ (radial pressure) and pt the pressure orthogonal to vµ (tangential pressure). Since we
are assuming an anisotropic spherically symmetric matter, one has pr 6= pt , such that their equality corresponds to
an isotropic fluid sphere.

∂ρ

∂t
+H (3ρ+ pr + 2pt) = 0 , (14)

∂pr
∂r

+
2

r
(pr − pt) = 0 (15)

According to the line element (12), the field equations from (10) read

T ′

rA2

(

B

r
− 1

)

fTT +





1

2r2A2

(

B′ +
B

r
− 1

)

+ 3

(

Ȧ

A

)2


 fT +
1

4
f = 4πρ (16)

T ′ Ȧ

A
fTT +





1

r2A2

(

B

r
− 1

2

)

+
Ä

A
+ 2

(

Ȧ

A

)2


 fT +
1

4
f = −4πpr , (17)

1

A

[

ȦṪ +
T ′

2rA

(

B

r
− 1

)]

fTT +





1

4r2A2

(

B′ +
B

r
− 2

)

+
Ä

A
+ 2

(

Ȧ

A

)2


 fT +
1

4
f = −4πpt . (18)

Ȧ

A
T ′fTT = 0 (19)

Ṫ

rA2

(

1− B

r

)

fTT = 0 (20)

cot θ

2r2A2
Ṫ fTT = 0 (21)

cot θ

2r2A2
T ′fTT = 0 (22)

(23)

The torsion scalar is given by

T (t, r) = −6

(

Ȧ

A

)2

− 2

r2A2

(

B

r
− 1

)

. (24)

For interesting analysis, various cases can be observed:

A. First case: fTT = 0

This condition means that the algebraic function f(T ) behaves as

f(T ) = k1T + k2 , (25)

where k1 and k2 are constants, which is the tele-parallel gravitational term. Without loss of generality, let us fix
k1 = 1 and k2 = 0, such that the field equations become

3

(

Ȧ

A

)2

+
B′

r2A2
= 8πρ (26)

2
Ä

A
+

(

Ȧ

A

)2

+
B

r3A2
= −8πpr (27)

2
Ä

A
+

(

Ȧ

A

)2

− B

2r3A2
+

B′

2r2A2
= −8πpt (28)
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Here the equations of continuity related to the time (14)-(15) are identically satisfied.

1. Vacuum solutions

In vacuum case, the energy density and the pressure vanish. Then, by using any one of the equations (26)-(28),
one gets

B(r) = −kr3 , A(t) =
√
kt+ k0 , (29)

where k > 0 and k0 are integration constants. Therefore the line element (12) becomes

ds2 = dt2 − (kt2)

[

dr2

1 + kr2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (30)

which is the FRW type solution. Then, for the specific choice B(r) = −kr3 of the shape function, with scale factor

A(t) =
√
kt+ k0, dynamic traversable wormhole vacuum solution in teleparallel gravity is of type FRW line element.

2. The case B(r) = B0r
3 + r , A(t) = A0t

α

The goal here is to write down the different expressions of the energy density, the pressure and the corresponding
line element. Hence, using the adopted expressions of B(r) and A(t), one gets

ρ(t, r) =
1

8π

[

3α2

t2
+

1 + 3B0r
2

A2
0r

2t2α

]

, (31)

pr(t, r) =
1

8π

[

α(2 − 3α)

t2
− 1 +B0r

2

A2
0r

2t2α

]

, (32)

pt(t) =
1

8π

[

α(2 − 3α)

t2
− B0

A2
0t

2α

]

(33)

The torsion scalar (24) becomes

T (t) = −6α2

t2
− 2B0

A2
0t

2α
. (34)

Note that for the parameter α = 1 the torsion scalar becomes constant. The line element (12) becomes

ds2 = dt2 −A2
0t

2α

[

− dr2

B0r2
+ r2

(

dθ2 + sin2 θdφ2
)

]

, (35)

Here it is straightforward to note that B0 has to be fixed as a negative constant. We conclude here that in the teleprallel
theory, it also appears that dynamic traversable wormhole non-vacuum solutions are FRW type solution, where the
energy density and the radial pressure, are radial coordinate and cosmic time dependent, while the tangential pressure
is only time dependent.

B. Second case: Ṫ = 0 and T ′ = 0

In this case, the field equations read




1

2r2A2

(

B′ +
B

r
− 1

)

+ 3

(

Ȧ

A

)2


 fT +
1

4
f = 4πρ (36)





1

r2A2

(

B

r
− 1

2

)

+
Ä

A
+ 2

(

Ȧ

A

)2


 fT +
1

4
f = −4πpr , (37)





1

4r2A2

(

B′ +
B

r
− 2

)

+
Ä

A
+ 2

(

Ȧ

A

)2


 fT +
1

4
f = −4πpt . . (38)



5

For the torsion scalar (24) to be free from t and r, it is straightforward to see that the couple (A(t), B(r)) =
(A0, B0r

3 + r) is a potential candidate. Since the torsion scalar is a constant, T0, one gets fT = 0, such that the
energy density, the radial and tangential pressures are constants. Setting f(T0)/16π = K, one gets

ρ = −pr = −pt = K (39)

The corresponding line element can be obtained from (35) by setting α = 0.

III. WORMHOLE SOLUTIONS FROM NON-DIAGONAL TETRAD

It appears clearly that the diagonal tetrad constrains the f(T ) model to the tele-parallel one and there is no new
solution1. Then, one can search for a non-diagonal tetrad as follows:

{eaµ} =

















1 0 0 0

0 A(t)
√

1−B(r)
r

sin θ cosφ A(t)r cos θ cosφ −A(t)r sin θ sinφ

0 A(t)
√

1−B(r)
r

sin θ sinφ A(t)r cos θ sinφ A(t)r sin θ cosφ

0 A(t)
√

1−B(r)
r

cos θ −A(t)r sin θ 0

















, (40)

whose inverse is

{e µ
a } =











1 0 0 0

0 [A(t)]−1
√

1− B(r)
r

sin θ cosφ [A(t)]−1
√

1− B(r)
r

sin θ sinφ [A(t)]−1
√

1− B(r)
r

cos θ

0 [rA(t)]−1 cos θ cosφ [rA(t)]−1 cos θ sinφ −[rA(t)]−1 sin θ
0 −[rA(t)]−1 sin−1 θ sinφ [rA(t)]−1 sin−1 θ cosφ 0











. (41)

Therefore, the field equations read

T ′

rA2



− B

r
√

1− B
r

+
1

√

1− B
r

+
B

r
− 1



 fTT +

+
1

A2

[

1

r2

(

B′

2
+

B

2r
+

√

1− B

r
− 1

)

+ 3Ȧ2

]

fT +
f

4
= 4πρ , (42)

Ȧ

A
Ṫ fTT +

1

A2

[

1

r2

(

B

r
+

√

1− B

r
− 1

)

+AÄ+ 2Ȧ2

]

fT +
f

4
= −4πpr , (43)





T ′

rA2



− B

2r
√

1− B
r

+
1

2
√

1− B
r

+
B

2r
− 1

2



+
Ȧ

A
Ṫ



 fTT +

1

A2

[

1

r2

(

B′

4
+

B

4r
+

√

1− B

r
− 1

)

+AÄ+ 2Ȧ2

]

fT +
f

4
= −4πpt , (44)

Ȧ

A
T ′fTT = 0 , (45)

Ṫ

rA2





B

r
√

1− B
r

− 1
√

1− B
r

− B

r
+ 1



 fTT = 0 (46)

1 The solutions are the same that should be obtained in tele-parallel theory of gravity.
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Here the torsion scalar reads

T (t, r) = −6

(

Ȧ

A

)2

+
2

r2A2

(

2− B

r
− 2

√

1− B

r

)

. (47)

From the equation (45) it appears that by fixing A(t) as a constant, i.e, A(t) = A0, the torsion scalar (47) is free from
the cosmic time and equations (45)-(46) are satisfied without the need of the strong constraint f(T )TT = 0. Then
the equations (42)-(44) and the torsion scalar become,respectively

T ′

A2
0r



− B

r
√

1− B
r

+
1

√

1− B
r

+
B

r
− 1



 fTT +

+
1

A2
0r

2

(

B′

2
+

B

2r
+

√

1− B

r
− 1

)

fT +
f

4
= 4πρ , (48)

1

A2
0r

2

(

B

r
+

√

1− B

r
− 1

)

fT +
f

4
= −4πpr , (49)

T ′

A2
0r



− B

2r
√

1− B
r

+
1

2
√

1− B
r

+
B

2r
− 1

2



 fTT +

1

A2
0r

2

(

B′

4
+

B

4r
+

√

1− B

r
− 1

)

fT +
f

4
= −4πpt , (50)

and

T (r) =
2

r2A2
0

(

2− B

r
− 2

√

1− B

r

)

. (51)

As performed in the previous section, where the diagonal tetrads are used, one can also distinguish some cases.

1. Null radial pressure case

In this case, we refer to the equation (49) which becomes

1

A2
0r

2

(

B

r
+

√

1− B

r
− 1

)

fT +
f

4
= 0 , . (52)

The fundamental task to be performed in this subsection and the coming ones is to choose an appropriate expression
to the f(T ) model and find out the corresponding expression of the radial function B(r); or having this latter and
reconstruct the associated f(T ) model.

• Fixing f(T ) as exponential function of the torsion scalar

Let us assume an exponential f(T ) and search for the analytical solution for the radial function B(r); that is f(T ) =
eaT where a is a constant. Then, the solutions of (52) read

B1,2(r) = 1− r

2
− aA2

0r
2

4
± 1

4

√

(aA2
0r

2 + 2r − 4)
2 − aA2

0r
4 (aA2

0r
2 − 8) (53)

Therefore the respective expressions of the torsion scalar, the energy density and the tangential pressure by injecting
(53) into (51), (48) and (50). Due to their long expressions we let them for numerical analysis in future analysis.

• Special case : B(r) = −B2
0r3 + r
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In this case, within the expression of B(r), we refer to the equation (51) and (52), and try to reconstruct the
corresponding f(T ) model. First, the torsion scalar (51) becomes

T (r) =
2

A2
0

(

B0 −
1

r

)2

(54)

and the corresponding equation of field related to the null radial pressure (52) reads

−4
B0

A0

√

T

2
fT + f = 0 , (55)

whose general solution is

f(T ) = C1e
A0
B0

√
T

2 , (56)

where C1 is an integration constant. Thus, using the definition of B(r) with (56), the expressions of energy density
and the tangential pressure can be determined in terms of the radial coordinate r. These expressions will be used for
the analysis of energy conditions in the section (IV).
The solution obtained here should be generalized to the case of dust dominated universe, where, due to the vanishing

radial and tangentail pressures, the energy conditions are naturally satisfied.

2. General isotropic traversable Wormhole solutions

Here we adopt pr = pt, still with the shape function B(r) = −B2
0r

3 + r. The resulted differential equation from
(49)-(50), without fixing B(r), reads

T ′



− B

2r
√

1− B
r

+
1

2
√

1− B
r

+
B

2r
− 1

2



 fTT +
1

r

(

B′

4
− 3B

4r

)

fT = 0 , (57)

where, making use of the torsion scalar (54), one gets two independent differential equations as the choice
√
B2r2 = B0r

or
√
B2r2 = −B0r is made. Thus, with the first choice, one obtains the following differential

TfTT +
1

2

(

1− A0

B0

√

T

2

)

fT = 0 (58)

whose general solution reads

f(T ) =
2
√
2k1B0

A0
e

A0
B0

√
T

2 + k2 , (59)

where k1 and k2 are integration constants.
With the second choice, one gets

4B0

√

T

2

(

2B0 +A0

√

T

2

)

fTT −A0

(

B0 +A0

√

T

2

)

fT = 0 , (60)

whose general solution reads

f(T ) =
2
√
2k3B0

A2
0

e
A0
B0

√
T

2 − 4
√
2k4B0

A2
0e

2
ExpIntegralEi

(

2 +
A0

B0

√

T

2

)

, (61)

where k3 and k4 are integration constants, and this solution generalizes the previous one. Thus, by setting k3 = A0k1
and k4 = k2 = 0, the solution (59) is recovered.
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IV. ENERGY CONDITIONS APPLIED TO THE SOLUTIONS

The wormhole physic is essentially governed by the violation of null energy condition. To this end, we can recast
the field equations as follows

B′

2A2
0r

2
= 4πρeff , (62)

B

2A2
0r

3
= −4πpr, eff , (63)

− B

2A2
0r

3
+

B′

4A2
0r

2
= −4πpt, eff (64)

with

ρeff =
1

4πfT

[

4πρ− T ′

A2
0r



− B

r
√

1− B
r

+
1

√

1− B
r

+
B

r
− 1



 fTT − 1

A2
0r

2

(

B

2r
+

√

1− B

r
− 1

)

fT − f

4

]

,(65)

pr eff =
1

4πfT

[

4πpr +
1

A2
0r

2

(

B

2r
+

√

1− B

r
− 1

)

fT +
f

4

]

, (66)

pt eff =
1

4πfT

[

4πpt +
T ′

A2
0r



− B

2r
√

1− B
r

+
1

2
√

1− B
r

+
B

2r
− 1

2



 fTT +

+
1

A2
0r

2

(

B′

4
+

B

2r
+

√

1− B

r
− 1

)

fT +
f

4

]

(67)
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FIG. 1: The curve indicates the variation of ρeff versus radial coordinate, according to the gravitational model (56), with
C1 = 1, A0 = 1, B0 = 1 (black curve), B0 = 5 (red curve) and B0 = 10 (blue curve).

With the reconstructed model (56) we perform the analyze about the energy conditions, more precisely the NEC.
The model depends on the parameters C1, A0 and B0, is used to graphically study the evolution of ρeff + peff and
ρeff − peff for both the radial and tangential pressures. We fix C1 = 1, A0 = 1 and B0 = 1, 5, 10. From Fig. 1 and
Fig. 2, it appears that ρeff ≥ 0 and ρeff + pr eff ≥ 0, showing that the existence of the static traversable wormhole
is possible even so null energy condition is satisfied is the radial direction. The Fig. 3 indicates the evolution of
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FIG. 2: Both panels indicate the variations of ρeff + pr eff versus radial coordinate, according to the gravitational model (56),
with C1 = 1, A0 = 1, B0 = 1 (black curve), B0 = 5 (red curve) and B0 = 10 (blue curve).
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FIG. 3: Both panels indicate the variations of ρeff +pt eff versus radial coordinate, according to the gravitational model (56),
with C1 = 1, A0 = 1, B0 = 1 (black curve), B0 = 5 (red curve) and B0 = 10 (blue curve).

ρeff + pt eff according to what it appears that in the tangential direction, the NEC should be violated, despite the
existence of static traversable wormhole. It can be concluded that the NEC is not determinant for the existence of
static traversable wormhole.
According to the model (59), the NEC is also analyzed, the dependence is now characterized by the parameters

fixed as k1 = 0.01, k2 = 1, A0 = 1 and B0 = 0.1, 0.2, 0.3. Hence, from Fig. 4, one always gets the condition ρeff ≥ 0,
whereas for both the radial and tangential directions, the NEC should be violated despite the existence of the static
traversable wormhole, as shown by Fig. 5 and Fig. 6.
According to the results obtained in [11], it is concluded that, in f(R) theory of gravity, energy conditions related to

the matter threading the wormhole are in general found to obey the null energy conditions (NEC) in regions around
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FIG. 5: The left and right panels indicate the variations of ρeff +pr eff versus radial coordinate, according to the gravitational
model (59), with C1 = 1, k1 = 0.01, k2 = 1, A0 = 1, B0 = 0.1 (black curve), B0 = 0.2 (red curve) and B0 = 0.3 (blue curve).

the throat, while in the limit f(R) = R; NEC can be violated at large in regions around the throat. On the other
hand, it is shown in [32] that wormhole solutions can be obtained in the absence of exotic matter for some particular
regions of spacetime; also in [33], it has been analyzed with the graphical evolution that the null energy and weak
energy conditions for the effective energy-momentum tensor are usually violated for the ordinary matter content,
while some small feasible regions for the existence of wormhole solutions have been found where the energy conditions
are not violated. Thus it comes from the various results that in some cases, the NEC can be (or not) violated for the
existence of the wormhole. According to f(T ) theory of gravity performed in the present paper, the violation of the
NEC is not a determinant condition for the existence of static traversable wormhole.
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FIG. 6: The left and right panels indicate the variations of ρeff +pt eff versus radial coordinate, according to the gravitational
model (59), with C1 = 1, k1 = 0.01, k2 = 1, A0 = 1, B0 = 0.1 (black curve), B0 = 0.2 (red curve) and B0 = 0.3 (blue curve).

V. CONCLUSION

This paper is devoted to the study of dynamical traversable wormhole solutions in the framework of f(T ) gravity,
where T denotes the torsion scalar. We then consider the metric (12), characteristic of dynamic and traversable
wormhole. Within diagonal tetrads treatment, constraints reduce the algebraic f(T ) to the standard teleparallel
gravitational action term, where the results are quite trivial. In order to get interesting results we focus on non-
diagonal tetrads, and according to specific shape functions, f(T ) models are reconstructed. The first important and
interesting remark of obtaining non-teleparallel term is impossibility of getting time dependent scale factor, that is
A(t) has to be constant, constraining the possible traversable wormholes to be static.
Our study is also extended to the analysis of the energy conditions around the reconstructed f(T ) models. With

the model (56) and for some values of the input parameters the NEC is always satisfied in the radial direction, while in
the tangential direction the NEC should be violated, even so the existence the static traversable wormhole. However,
with the model (59), it appears from the Fig. 5 and Fig. 6 that the NEC should be violated the static traversable
wormhole exists. Thus, we conclude that the violation of the null energy condition condition is not determinant for
the existence of static traversable wormhole.
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