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In this article, we present an approach which allows taking into account the effect of extreme values in the modeling of financial
asset returns and in the valorisation of associated options. Specifically, the marginal distribution of asset returns is modelled by a
mixture of two Gaussian distributions. Moreover, we model the joint dependence structure of the returns using a copula function,
the extremal one, which is suitable for our financial data, particularly the extreme values copulas. Applications are made on the
Atos and Dassault Systems actions of the CAC40 index. Monte Carlo method is used to compute the values of some equity options
such as the call on maximum, the call on minimum, the digital option, and the spreads option with the basket (Atos, Dassault
systems) as underlying.

1. Introduction

Since the pioneering work of Black and Scholes [1] and Cox
et al. [2] (respectively, in the continuous and discrete case),
option pricing has become a crucial topic in finance. Indeed,
considering a European-type option on an underlying asset
with a price St, strike K, and expiration T, Black and Scholes
have made it possible to determine a formula for the price of
such options under certain assumptions, the fundamentals
of which are the lack of arbitrage opportunity and that on the
price St of the asset underlying (St follows geometric
Brownian motion), i.e.,

dSt � μStdt + σStWt, (1)

where μ and σ are constant and Wt is a standard geometric
Brownian motion.

*us, the formulas of the theoretical relative values of a
call option and put option are derived.

Options are essential financial products allowing to their
holders to hedge against the risk of their investments falling.
*is is how we are increasingly seeing the creation of several

types of options such as exotic options, multivariate options,
etc., with the aim of providing more security. As a result,
valuationmodels are also evolving. Of all the multiple option
pricing models, it turns out that each one is primarily based
on the dynamic of underlying asset pricing model (for
options with only one underlying) or the asset portfolio (for
options on multiple assets), when market assumptions are
known. In fact, since the assumption of no arbitrage op-
portunity (NAO) in the markets is the basis of the funda-
mental results obtained in finance, it is considered by default
(there are markets on which the arbitration assumption is
considered). *e advantage under this NAO assumption is
that, associated with that of market completeness, there is a
single risk-neutral probability for which the discounted
flows are martingales. In the univariate case, one of the most
interesting results obtained in this direction on valuation is
that of Breeden et al. [3]. It states that the second derivative
(when it exists and is continuous) of the price of a standard
option relative to the strike coincides with the risk-neutral
density. Indeed, if Dt is the price of a European option of an
underlying asset with price Xt having for pay-off g(XT), T
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the time to expiration, and r the risk-free interest rate, then
the risk-neutral density f∗(XT) is linked to Dt by

Dt � e
−r(T− t)

E
∗

g XT( 􏼁􏼈 􏼉 � e
−r(T− t)

􏽚 g XT( 􏼁f
∗

XT( 􏼁dXT.

(2)

For valuation in the multivariate framework, this risk-
neutral formula is a simple generalization (for example,
[4, 5] are used this generalization). Talponen and Viitasaari
[6] recently gave the multivariate version of the univariate
result.

Multivariate options (rainbow, digital, quantos, etc.),
which will be the main subject of our study in this paper,
constitute the central themes of current research on financial
risk coverage (see Tsuzuki [7]). *e advantage lies in the fact
that they offer better coverage against risks. Indeed, the basic
idea is that when the option is a function of several assets, the
fall in value of one asset is compensated by the rise of
another asset in the portfolio. *us, the association or de-
pendence between assets plays a major role in the pricing of
these types of options. To take such an aspect into account in
the valuation, the use of the copula is a good alternative.

*e valuation of multivariate options by copulas is in full
development. *e copula gives the advantage of joining the
marginal and the dependence structure. *is is the case for
many works on the valuation of options with copulas; the
emphasis is first on marginal risk-neutral densities and then
on the joint risk-neutral density (risk-neutral copula). For
example, we can cite the work of Cherubuni and Luciano [8],
Cherubuni and Luciano [9], Rosenberg [10], Salmon and
Schleichere [11], and Slavchev and Wilkens [12]. However,
all this work did not take into account the effects of extreme
values in the marginal, which is not without effect on val-
uation (risk of overvaluation or undervaluation). However,
there are other copula modeling approaches based on vol-
atility dynamics as in van den Goorbergh et al. [13], Bernard
and Czado [14], and Barban and Di Persio [4]. *e reader
can consult them for full details on the literature on this
approach.

In this present study, we propose a valuation method for
multivariate options allowing taking into account the effects
of extreme values in the marginal and the joint structure on
the basis of the works of Idier et al. [15] and the use of
extreme values copulas.

In the rest of this work, in the first section we give the
results obtained by Idier et al. [15] which will be necessary
and some essential notions on copulas. In the second section,
we expose the methodology used for leading properly the
application of the approach. *en, the obtained results of
different estimations and simulations are presented, with
their analysis and interpretations. *e last section presents a
conclusion and discussion.

2. Preliminaries

2.1. Results of an Approach of Modeling Financial Assets.
It is proved that the empirical distribution of financial asset
returns has thicker tails than that of the Gaussian distri-
bution. *is indicates the presence of extreme values. *is

fact shows also that the normal distribution does not make it
possible to model rigorously the returns of financial assets
because it does not take into account the extreme. *is is the
case with the method proposed by Black and Scholes [1].

To take into account the effects of extreme values, Idier
et al. [15] proposed, as an alternative to the normal distri-
bution, modeling the distribution of the rates of return of the
underlying asset of an univariate option, under NAO as-
sumption, by a mixture of Gaussian distribution in the
continuous framework (their method is a generalization of
the method in the discrete case of Bertholon, Monfort and
Pegoraro, Pegoraro). *ey justified their choice by the fact
that a mixture of Gaussian distributions makes it possible to
approximate all the distributions usually used (Gaussian,
alpha-stable, Student, hyperbolic, etc.); also, it has certain
theoretical properties allowing easy handling in the frame of
theoretical model for valuing asset price and it is easy to
simulate and can reproduce various sets (mean, variance,
skewness, and kurtosis) observed in the data.

Under the assumption that the historical distribution of
the returns of the underlying Xt+1 � ln(St+1/St) where St is
the price at time t of the underlying asset is a mixture of 2
Gaussian distributions, its density is given by

f(x) � 􏽘

2

i�1
pi.n x, μi, σ

2
i􏼐 􏼑, (3)

where

n x, μi, σ
2
i􏼐 􏼑 �

1
σi

���
2π

√ exp
− x − ui( 􏼁

2

2σ2i
􏼨 􏼩 (4)

is the density of a Gaussian distribution with mean μi and
standard deviation σi; 0<pi < 1 and 􏽐

2
i�1 pi � 1.

Moreover, the stochastic discount factor is characterized
by an affine exponential form, i.e.,

Mt;t+1 � exp αtXt + βt􏼈 􏼉. (5)

*ey establish, under these assumptions, that the risk-
neutral distribution is also a Gaussian mixture and that its
density f∗ is defined by

f
∗
(x) � 􏽘

2

i�1
vi.n x, μi + α.σ2i , σ2i􏼐 􏼑, (6)

where

vi �
pi exp μiα + α2/2􏼐 􏼑σ2i􏽮 􏽯􏼐 􏼑

􏽐
2
i�1 pi exp μiα + α2/2􏼐 􏼑σ2i􏼐 􏼑

, (7)

with 0< vi < 1, 􏽐
2
i�1 vi � 1.

*us, they derive the relative theoretical price of a Eu-
ropean call with a one-period maturity (T � t + 1) and a
relative strike k:

ct(T, k) � 􏽘
2

i�1
vicicbs σ2i ,

k

ci

􏼠 􏼡, (8)

where cbs(., .) is the Black–Scholes one-period (T � t + 1)

formula for the relative price of a call and
ci � exp μi + α.σ2i − r + (σ2i /2)􏼈 􏼉, for J � 2.
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Remark 1. *e existence of the call-put parity relation
makes it possible to simplify the task in calculating option
price. It is then sufficient to calculate the price of the call to
deduce that of the corresponding put (or vice versa) by the
relation

Ct(T, K) + Ke
−r(T− t)

� Pt(T, K) + St. (9)

2.2. A Survey of Copulas. In this section, we recall the basics
on copulas. *ese are the definitions and properties essential
for our study. For more details on copulas, see Nelsen [16].

2.3. Definitions and Properties. *e copula is a function
allowing capturing the structure of dependence between
several random variables.

A function C: [0, 1]d⟶ [0, 1] is a d-copula if it satisfies
the following properties:

(i) For all u in[0, 1], C(1, . . . , 1, u, 1, . . . , 1) � u.
(ii) For all ui in[0, 1], C(u1, . . . , ud) � 0 if at least one of

the ui is zero.
(iii) C is “grounded” and d-increasing, i.e.,

􏽘

2

i1�1
. . . 􏽘

2

id�1
(−1)

i1+···+id C u1,i1
, . . . , ud,id

􏼐 􏼑≥ 0, (10)

for all (u1,1, . . . , ud,1) and (u1,2, . . . , ud,2) ∈ [0, 1]d with
ud,1 ≤ ud,2.

*e fundamental result on the copula due to Sklar states
that for a whole multivariate distribution F with continuous
marginal F1, . . . , Fd, there exists a unique (uniqueness is not

guaranteed when marginal is not continuous) copula
C: [0, 1]d⟶ [0, 1] such that

F x1, . . . , xd( 􏼁 � C F1 x1( 􏼁, . . . , Fd xd( 􏼁( 􏼁. (11)

Conversely, when C is a copula and F1, . . . , Fd are
marginal distributions, the function F defined by (11) is a
multivariate distribution with marginal distributions
F1, . . . , Fd.

*is result makes it possible to deduce several properties
of the copula including invariance by any monotonic
transformation. Another consequence of Sklar’s theorem is
that every copula C satisfies

max 􏽘
d

i�1
ui − d + 1; 0⎛⎝ ⎞⎠≤C u1, u2, . . . , ud( 􏼁≤min u1, u2, . . . , ud( 􏼁.

(12)

*is relation is the variant in terms of copulas of the
Frechet–Hoeffding bounds of a multivariate distribution.
*e upper bound min(u1, u2, . . . , ud) is the comonotonic
copula representing the perfect positive dependence. *e
lower bound max(􏽐

d
i�1 ui − d + 1; 0) is a copula only for

d � 2. In this case, it represents the perfect negative
dependence.

Remark 2. If F is the multivariate survival distribution of a F

distribution of marginal Fi; i � 1, . . . , d, then the survival
copula, denoted by C, is defined by

F x1, . . . , xd( 􏼁 � C F1 x1( 􏼁, . . . , Fd xd( 􏼁( 􏼁. (13)

*e survival copula C is related to the copula C, for all
(u1, u2, . . . , ud) ∈ [0, 1]d, by

C u1, u2, . . . , ud( 􏼁 � 􏽘
M⊂N

(−1)
m

C 1 − u1( 􏼁
11∈M, 1 − u2( 􏼁

12∈M, . . . , 1 − ud( 􏼁
1d∈M􏼐 􏼑, (14)

where N � 1, 2, . . . , d{ }, m � |M| is the cardinality of M, and
1i ∈M indicates that i belongs to M.

It is therefore advisable not to confuse the dual copula
with the survival copula.

2.4. Sample of Copulas for Finance in �is Study

2.4.1. Archimedean Copulas. In the literature, there are
several families of copulas, some of which are more suited to
financial modeling. Archimedean copulas family includes the
models of Clayton, Frank, and Gumbel. *ese copulas have
the advantage of capturing the structure of positive or neg-
ative dependence between the variables. *ese types of de-
pendences are characteristics of financial variables, which
justifies the use of this copula family. In terms of option
pricing, for example, these copulas have been used in
Cherubuni and Luciano [8] and in Slavchev andWilkens [12].

2.4.2. Elliptical Copulas. Other types of copulas used in
finance are the normal copula and the t-copula. *ey belong
to the family of elliptical copulas which describe the de-
pendence structure of elliptical distributions. *e choice of
this family is justified by the fact that elliptic distributions
have long been used to model random phenomena in many
fields. Despite the demonstration of the leptokurtic character
of the returns of financial series, of which they have the
weakness to rigorously model, they are still used.

2.5. Estimation-Adequacy Test of a Copula. *e choice of the
copula rigorously describing multivariate statistical data
requires estimation and conformity testing.*ere are several
techniques in the literature for estimating copulas belonging
to different families: parametric, semiparametric, and
nonparametric. For more details on these methods, see
Bouyé [17].
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2.5.1. Estimation by the IFM Method. *e IFM (inference
functions of margins) method is a two-step estimation
method of a copula. It was presented by Shih and Louis [18]
in the bivariate case and then developed in dimension
greater than two by Joe and Xu [19]. It is carried out as
follows:

(1) *e first step consists in finding the estimators 􏽢αi of
the parameters αi, i � 1, . . . , d for marginal distri-
butions by maximum likelihood:

􏽢αi � argmax􏽘
N

j�1
ln fn x

j

i ; αi􏼐 􏼑. (15)

(2) Once the marginals have been determined, we es-
timate the parameter θ of the copula that best de-
scribes these marginals by the maximum likelihood.

􏽢θ � argmax􏽘
N

j�1
ln c F1 x

j
1; 􏽢α1􏼐 􏼑; . . . ; Fd x

j

d; 􏽢αd􏼐 􏼑; θ􏼐 􏼑.

(16)

One of the advantages of this method is that under
certain conditions of regularity, the IFM estimator is con-
sistent and asymptotically normal.

Also, in terms of numerical computation time, this
method is better than the “direct” maximum likelihood
method since it is simpler and faster.

2.5.2. Fit Test. To confirm whether the chosen parametric
copula models the data well, it is necessary to perform a test.
*e most powerful tests are based on the processes�

n
√

(􏽢C − C􏽢θ
), where 􏽢C and C􏽢θ

are, respectively, the empirical
copula and the parametric copula.

*e Cramer–von Mises statistic is by far the most used
because it gives satisfactory results. It is defined by

􏽚
[0;1]d

n 􏽢C − C􏽢θ
􏼒 􏼓d􏽢C. (17)

Other criteria such as the Akaike Criterion (AIC) and the
Bayesian Inference Criterion (BIC) are very often used for
the choice of the best copula. *ey are, respectively, defined
by

AIC � 2m − log(l(θ)),

BIC � m
∗log(n) − log(l(θ)),

(18)

where l(θ) is the model likelihood for the estimated pa-
rameter θ, m the number of estimated parameters, and n the
data size.

3. Methodology and Application

*e price of a multivariate option is a function of the density
associated to the joint distribution. *us, their valuation

requires the determination of the joint risk-neutral density.
To do this, it suffices to determine the marginal risk-neutral
densities and then to choose the copula that best describes
their dependence structure by using Sklar’s theorem. *is
perspective is possible because the objective copula can be
matched with the risk-neutral joint copula, under certain
conditions (see Rosenbergh [20]).

3.1. Methodology. Our approach consists firstly in deter-
mining the marginal risk-neutral distributions by the pro-
cedure used by Idier et al. [15]. *is is done in order to take
into account the effect of extreme values in the margins. We
will also limit ourselves to the case of a mixture of two
Gaussians in this study. Clearly, we will use these two steps:

(1) Estimate the parameters of the mixture regimes.
(2) Estimate the parameters of the stochastic discount

factor, using (31).
*en, we will choose among the families of copulas
listed in the section the one that best suits the study.
And finally, we will determine the prices of the
multivariate options by numerical integration
(Monte Carlo method) by using the formulas pro-
vided below for multivariate options considered. For
doing so, and to complete the procedure, we will
proceed by using these last four steps.

(3) Generate, by using our historical data returns, a
sample x∗i ∼ F∗i , i � 1, . . . , d. Each risk-neutral
marginal distribution F∗i , i � 1, . . . , d, has the density
given by (4) with the adequate parameters, estimated
in steps (1) and (2).

(4) Transform the vector sample (x∗1 , . . . , x∗d) to vector
of pseudo sample (u∗1 , . . . , u∗d) ∼ C∗θ .

(5) Estimate the parameters θ of the copula C∗θ using
(u∗1 , . . . , u∗d).

(6) Use Monte Carlo numerical integration method to
calculate the option prices.

We will be particularly interested by rainbow options
(those relating to the maximum or the minimum of several
assets, etc.). *ese kinds of options have been the subject of
many studies as in Stulz [21] and Jonshon [22].

Consider d assets whose price at maturity T is denoted
by ST

1 , . . . , ST
d and denote by XT

1 , . . . , XT
d , respectively, the

returns associated to each asset at instant T (with for all
i � 1, . . . , d; XT

i � ln(ST
i /St

i)). For a chosen strike price K, we
consider the following different types of rainbows: spreads
option; option on the maximum; option on the minimum
and digital option.

3.2. Spread Option. Having a pay-off equal to
max(ST

2 − ST
1 − K; 0), its value is calculated by
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VOS(t) � e
−r(T− t)

E
∗ max S

T
2 − S

T
1 − K; 0􏼐 􏼑􏽮 􏽯 � e

− r(T− t)
E
∗

􏽚
R
I K+ST

1≤x≤S
T
2{ }dx􏼚 􏼛

� e
−r(T− t)

E
∗

􏽚
R
I K+ST

1≤x{ } − I K+ST
1≤x et ST

2≤x{ }dx􏼚 􏼛,

(19)

which gives

VOS(t) � e
−r(T− t)

􏽚
+∞

−∞
P
∗

K + S
T
1 ≤ x􏽮 􏽯 − P

∗
K + S

T
1 ≤ x et S

T
2 ≤ x􏽮 􏽯dx

� e
−r(T− t)

􏽚
+∞

−∞
P
∗ S

T
1

S
t
1
≤

x − K

S
t
1

􏼨 􏼩 − P
∗ S

T
1

S
t
1
≤

x − K

S
t
1

et
S

T
2

S
t
2
≤

x

S
t
2

􏼨 􏼩dx,

(20)

and finally

VOS(t) � e
−r(T− t)

􏽚
+∞

−∞
P
∗

X
T
1 ≤ log

x − K

S
t
1

􏼠 􏼡􏼨 􏼩 − P
∗

X
T
1 ≤ log

x − K

S
t
1

􏼠 􏼡et X
T
2 ≤ log

x

S
t
2

􏼠 􏼡􏼨 􏼩dx

� e
−r(T− t)

􏽚
+∞

K
e

r(T− t) zPt,1

zk1
T; log x1 − k1( 􏼁( 􏼁 −

− C e
r(T− t)zPt,1

zk1
T; log x1 − k1( 􏼁( 􏼁; e

r(T− t)zPt,2

zk2
T; log x2( 􏼁( 􏼁􏼠 􏼡dx,

(21)

where

xi �
x

S
t
i

;

ki �
K

S
t
i

,

(22)

and Pt,i is the put i price, for i � 1, 2.

3.3. Call on the Maximum. Its pay-off is equal to
max max(ST

1 , . . . , ST
d ) − K; 0􏼈 􏼉. *us, its price at maturity is

given by

VCMax(t) � e
−r(T− t)

E
∗ max max S

T
1 , . . . , S

T
d􏼐 􏼑 − K; 0􏽮 􏽯􏽮 􏽯 � e

−r(T− t)
E
∗

􏽚
R
I k≤x≤max ST

1 ,...,ST
d( ){ }dx􏼚 􏼛

� e
−r(T− t)

E
∗

􏽚
+∞

K
1 − I max ST

1 ,...,ST
d( )≤x{ }dx􏼚 􏼛,

(23)

we obtain

VCMax(t) � e
−r(T− t)

􏽚
+∞

K
1 − P
∗

S
T
1 ≤x, . . . , S

T
d ≤x􏽮 􏽯dx

� e
−r(T− t)

􏽚
+∞

K
1 − P
∗

X
T
1 ≤x1, . . . , X

T
d ≤ xd􏽮 􏽯dx,

(24)

and finally

VCMax(t) � e
−r(T− t)

􏽚
+∞

K
1 − C e

r(T− t)zPt,1

zk1
T; x1( 􏼁, . . . , e

r(T− t)zPt,d

zkd

T; xd( 􏼁􏼠 􏼡dx, (25)
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where xi � log(x/St
i) and Pt,i is the put i price, for i � 1, 2. 3.4. Call on the Minimum. It admits for pay-off

max min(ST
1 , . . . , ST

d ) − K; 0􏼈 􏼉 and its value at maturity is
then defined by

VCMin(t) � e
−r(T− t)

E
∗ max min S

T
1 , . . . , S

T
d􏼐 􏼑 − K; 0􏽮 􏽯􏽮 􏽯 � e

−r(T− t)
E
∗

􏽚
R
I k≤x≤min ST

1 ,...,ST
d( ){ }dx􏼚 􏼛, (26)

which is equal to

VCMin(t) � e
−r(T− t)

E
∗

􏽚
+∞

K
I min ST

1 ,...,ST
d( )≥x{ }dx􏼚 􏼛 � e

−r(T− t)
􏽚

+∞

K
P
∗

S
T
1 ≥ x, . . . , S

T
d ≥x􏽮 􏽯dx, (27)

and at the end, we obtain

VCMin(t) � e
−r(T− t)

􏽚
+∞

K
P
∗

X
T
1 ≥ x1, . . . , X

T
d ≥ xd􏽮 􏽯dx

� e
−r(T− t)

􏽚
+∞

K
C −e

r(T− t)zCt,1

zk1
T; x1( 􏼁, . . . , −e

r(T− t)zCt,d

zkd

T; xd( 􏼁􏼠 􏼡dx.

(28)

where xi � log(x/St
i) and Ct,i is the call i price, for i � 1, 2. 3.5. Digital Option. It has for pay-off I ST

1 ≥K1 ,...,ST
d
≥Kd{ }. *us,

its value at maturity is given by

VODig(t) � e
−r(T− t)

E
∗

I ST
1 ≥K1 ,...,ST

d
≥Kd{ }􏼚 􏼛 � e

−r(T− t)
P
∗

S
T
1 ≥K1, . . . , S

T
d ≥Kd􏽮 􏽯, (29)

which gives us

VODig(t) � e
−r(T− t)

C −e
r(T− t)zCt,1

zk1
T; k1( 􏼁, . . . , −e

r(T− t)zCt,d

zkd

T; kd( 􏼁􏼠 􏼡, (30)

where ki � Ki/St
i ; Ct,i is the call i price, for i � 1, . . . , d, and C

the survival copula.

Remark 3. Not to forget that the quantities
−er(T− t)(zCt,d/zk)(T; k) and er(T− t)(zPt,d/zk)(T; k) are
both equal to the risk-neutral distribution whose density is
given by relation (4) for our study.

3.6. Applications. We will focus on the bivariate options on
the pair of Atos and Dassault Systems shares. *e data were
obtained from Investing.com and relate to the components of
the CAC40 index of the Paris stock exchange. *e collected
data concern the closing prices for the period from July 01,
2014, to June 30, 2020 (1534 days).

At first, for each of the two assets (Atos; Dassault Sys-
tems), the parameters of the two Gaussian regimes consti-
tuting the Gaussian mixture are determined (Table 1) as well
as the proportions of each diet.

In the next step, we determine the parameters (αt; βt) of
the stochastic discount factor defined by relation (3) thanks
to the assumptions of the model, in particular that of lack of
arbitration opportunity. *ese parameters are determined as
unique solution of (see [15])

exp rt+1 + βt( 􏼁E exp αtXt+1( 􏼁􏼈 􏼉 � 1,

exp βt( 􏼁E exp αt + 1( 􏼁Xt+1( 􏼁􏼈 􏼉 � 1,
􏼨 (31)

where rt+1 is the risk-free rate at t + 1, known at t.
*e results obtained for a risk-free rate rt+1 � 0.025 are

presented in Table 2.
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3.7. Copulas Fitting Results. We can now fit the copulas to
our data because all the parameters needed for express the
risk-neutral density (given by (6)) are known. We present
below the results of the copula estimates associated with our
data. In each case, we will base ourselves on the Cramer–von
Mises statistic and/or the AIC criteria for the choice of the
best copula.

In Table 3, we present the estimated parameters (and
their Cramer–von Mises statistics) for bivariate copulas. It
then emerges that the three copulas with the best Cra-
mer–von Mises statistic are Tawn’s copula, Frank’s copula,
and Gumbel’s copula in that order.

Table 4 gives the AIC and BIC of the parameters esti-
mated for the bivariate copulas chosen. Based on these
criteria, the four best candidate copulas for our bivariate data
are the normal copula, the Husler–Reiss’s copula, the Gal-
ambos’s copula, and the Gumbel’s copula.

We can notice that, for our data, the performance of each
fitted copula differs according to the criterion. It is then
difficult to make a particular choice on a copula in such
situation on the basis of the two criteria (Cramer–von Mises
statistic vs AIC) combined. Nevertheless, if there is a choice
to be made between these two criteria, it would be more
judicious to base oneself on the Cramer–von Mises test.

3.8. Options Prices byMonte Carlo Approach. In this section,
we give the simulation results of the prices (for one period
T � t + 1) of all options presented in the section above based
on the basket (Atos, Dassault systems). Tables 5 and 6 give,
respectively, the prices of the call on maximum and the call of
maximum. We fix the price of each asset of the bivariate
basket to 120. *e values of their prices are calculated when it
is out-of-the money (OTM), at-the-money (ATM), and in-
the-money (ITM). For the cases of digital option and the
spread option, we fix, respectively, the price of the basket to
S � (120, 130) and S � (100, 120). We give the prices of these
options in Tables 7 and 8 obtained also for different strikes. By
using the formulas in Section 2, the prices are calculated by

Monte Carlo numerical expectation calculation method with
N � 105 simulations (the choice of the bivariate options with
our underlying is simply for academic interest. In fact, they
are not exchanged on the market). Indeed, since most of these
formulas are expressed in terms of integrals, we can transform
each of them into an expectation of a random variable with
suitably chosen distribution. In our case, we make first a
change of the integral bounds (K, +∞) to (0, +∞) and
choose the Paréto distribution.

For the case of the call on maximum (Table 5), the price
obtained by normal is superior to the prices with all others
copulas (Archimedean and extreme) in all the three situa-
tions without only the case when it is at-the-money with
Cayton’s copula. We notice that the prices obtained with the
others are approximately the same (weak discrepancies).*e
normal copula overestimates the price compared to Tawn’s
copula which has the best fitness test.

In the case of the call on minimum (Table 6), the normal
copula presents a price which is lower than that obtained by
any extreme value copula when it is at-the-money or out-of-
the money. We notice the contrary when it is in-the-money.

Particularly, the normal copula gives a highest price than
Tawn’s copula when it is in-the-money with a small dis-
crepancy. And, when it is at-the-money or out-of-the money
Tawn’s copula produces a price superior to that of normal
copula with a fairly larger gap than the first situation.

For prices of the digital option (Table 7), that obtained by
normal copula is inferior to the others calculated by extreme
copula in the three situations of valuation.

For the spreads option (Table 8), we notice that when it is
at-the-money the normal copula gives the highest price and
Tawn’s copula gives the smallest price. Otherwise, when it is
in-the-money the normal copula gives the smallest price.
Finally, when the option is out-of-the money, the normal
copula gives the second great price. Comparatively to the
price obtained with Tawn’s copula, the price calculated with
normal copula is the greatest when the option is at-the-
money and out-of-the-money but the smallest when it is in-
the-money see Abba-Mallam et al. [23, 24].

Remark 4. When X and Y are two random variables
modeling the returns of two shares, having an extreme value
copula, one can compute the discordance function for more
information about the dependence between these variables.
Formore details on thismeasure, see Dossou-Gbété et al. [25].

Table 1: Estimated parameters of the Gaussian mixture and their proportion.

Regime 1 Regime 2 Gaussian mixture Empirical distribution

Atos

Moyenne −0.0072328 0.000764489 0.00013704 0.0001370
Ecart-type 0.0603574 0.013530408 0.02142835 0.0214349
Skewness 0 0 −0.6131518 −2.823688
Kurtosis 3 3 15.7 42.81632

Proportion 0.07845771 0.921542310 – –

Dassault systems

Moyenne 0.00110506 −0.00101651 0.0007598786 0.0007599
Ecart-type 0.01014017 0.03315738 0.01577694 0.01630201
Skewness 0 0 −0.03745108 0.1949504
Kurtosis 3 3 10.00661 12.39682

Proportion 0.83729906 0.16270094 – –

Table 2: Stochastic discount factor parameters for data returns
with a risk-free rate rt+1 � 0.025.

Atos Dassault
αt 36.1209027 37.70565
βt −0.3610132 −0.3500945
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4. Conclusion and Discussions

*is paper proposes an approach that allows taking into
account the effect of extreme values in the marginal and joint
distribution of the underlying for the valorisation of mul-
tivariate options. For doing so, at first, each marginal dis-
tribution of the returns of any underlying asset is modelled
by a mixture of Gaussian as in Idier et al. [15] and the
dependence structure is modelled by a copula. *e choice of

the best copula is confirmed by fitting and goodness test
fit.An application is made on the basket (Atos, Dassault
systems) of the financial market CAC40 which reveals that
Tawn’s copula is the best for modeling the dependence
structure of their returns. *us, the prices of four type of
options are calculated by use of Monte Carlo simulation.*e
simulations results show that the normal copula overesti-
mates the prices for the call on maximum and the spread
option when they are at-the money. In the case of digital and

Table 3: Parameters of bivariate copulas selected and their Cramer–von Mises test statistics.

Normal Clayton Gumbel Frank Tawn Galambos Husler–Reiss
Parameter 0.2822 0.1766 1.344 2.3166 0.6868 0.5995 0.9798
Statistic of test 1.469 3.257 0.72485 0.636 0.6136 0.79162 0.84238
p value 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

Table 4: AIC and BIC of the estimated parameters (by the maximum likelihood) for the selected bivariate copulas.

Normal Clayton Gumbel Frank Tawn Galambos Husler–Reiss
log(l(θ)) 365.9 325.1 345.4 291.8 320 354.7 358
AIC −729.8 −648.2 −688.8 −581.6 −638 −707.4 −714
BIC −724.46 −642.86 −683.46 −576.26 −632.66 −702.06 −708.66

Table 5: Prices of the call on maximum with different strikes.

Normal Clayton Gumbel Frank Galambos Tawn Husler–Reiss
OTM (K� 130) 2.7126 2.6947 2.6642 2.6888 2.6593 2.6664 2.6617
ATM (K� 120) 7.328 7.417 7.0226 7.101 7.0216 7.0264 7.0245
ITM (K� 110) 17.211 17.057 16.743 16.794 16.674 16.660 16.673

Table 6: Prices of the call on minimum with different strikes K.

Normal Clayton Gumbel Frank Galambos Tawn Husler–Reiss
OTM (K� 130) 0.0386 0.02188 0.05882 0.03639 0.06085 0.05437 0.06224
ATM (K� 120) 1.181 0.995 1.361 1.268 1.356 1.369 1.353
ITM (K� 110) 10.628 10.183 10.559 10.451 10.536 10.523 10.543

Table 7: Prices of the bivariate digital option (paying one unit of the money) with different strikes K.

Normal Clayton Gumbel Frank Galambos Tawn Husler–Reiss
OTM 0.02283713 0.014745475 0.03258418 0.02359763 0.03306132 0.03181797 0.03329281
ATM 0.5208968 0.507406 0.5273577 0.5344094 0.5258449 0.53006026 0.5247992
ITM 0.97519641 0.9751979 0.9751963 0.9751963 0.9751963 0.9751964 0.9751963

Table 8: Prices of the bivariate spread option with different strikes K.

Normal Clayton Gumbel Frank Galambos Tawn
OTM (K� 30) 0.04626 0.05037 0.01244 0.02615 0.00898 0.01909
ATM (K� 20) 2.1429 1.379 0.9609 1.0818 1.006 0.8878
ITM (K� 10) 6.5442 7.8945 7.4151 7.8331 7.5363 7.4094
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call on minimum, this copula underestimates the prices
when the options are at-the money.
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