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Abstract
This work deals with themodeling of an active sensor consisting of a Josephson junction, a micro-beam immersed in a uniform
magnetic field B, a dipole (r, L, C) and an auxiliary generator. In this work, an active sensor (independent of an external
energy supply) capable of converting low temperature and/or a uniform magnetic field B into sinusoidal electrical voltage has
been constructed. Being known as an excellent voltage-frequency converter, we have in a second time studied the influence
of the Josephson junction on the oscillation frequency of the electrical and mechanical parts of the Micro Electro-Mechanical
System. An analytical study of the fixed points and their stability is done. On the other hand, the numerical studies have been
done in order to show how the energy losses are compensated thanks to a simple rheostat of the auxiliary generator. The order
of the influence of the Josephson junction on the oscillation frequencies and the different electrodynamic modes has been
obtained.

Keywords Modelization · Josephson junction · Active sensor · Stability · Micro-electromechanical system · Periodic and
chaotic vibrations

1 Introduction

From aeronautics to meteorology and in almost all scientific
fields, MEMS/NEMS, and sensors/actuators have become
indispensable tools for the practicability and efficiency of
the latest generation of devices. Michael Roukes in his arti-
cle “Nanoelectromechanical systems face the future” has
strongly demonstrated what is an electromechanical sys-
tem, the contributions of nanomachines, the procedure of
their manufacture, the challenge of NEMS and some of
their interesting applications [1]. In other works, Roukes,
Ekinci, Etaki, Bullard, Matheny, Cross, Karabalin and many
other researchers have studied the thermal, electrical and
mechanical behaviors of micro/nanobeams and nanotubes.
The formulas giving the quantities like the total and effective
mass, the own frequency, the kinetic energy, the fluctuation
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of the temperature of the micro/nano-beam, the amplitude
of vibration, the constant of stiffness, the own pulsation,
the intrinsic damping coefficient of the micro/nano-beam,
the speed of a point along the micro/nano-beam and many
other important parameters such as the quality factor Q,
micro/nano-beams are well defined. In many fields such as
industry, engineering, scientific research, services, hobbies
…, the need to control the physical parameters such as the
temperature, the forces, the pressure, the speed, the luminos-
ity …are inevitably felt. The sensor proves to be an essential
element for the detection of these physical quantities. Indeed,
a sensor is an organ (passive or active) information gather-
ing which develops from a measurable physical size, another
usable physical quantity of different nature (often electrical).
This magnitude representative of the sampled quantity can
be used for measurement or control purposes.We distinguish
several types of sensors generally classified in twomajor cat-
egories: passive sensors and active sensors. Our work here
focuses on the latter category (active sensor) given its char-
acteristics and abilities in many scientific fields. Indeed, an
active sensor operates as a generator and is generally based
in principle on the physical effect that ensures the conver-
sion into electrical energy from the form of energy associate
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to the greatness physical to take. The physical effects most
often encountered in instrumentation are:

• The thermo-electric effect: a circuit formed of two con-
ductors of different chemical nature, including junctions
are at different temperatures T1 and T2, is the seat of an
electromotive force of thermal origin e(T1, T2).

• The piezoelectric effect: following the application of a
mechanical stress to certain so-called piezoelectric mate-
rials (quartz for example), we note the appearance of an
electric charge proportional to the deformation under-
gone and of different sign on opposite sides.

• The photoelectric effect: the release of electric charges
into the material under the influence of a light radiation
or more generally of an electromagnetic wave.

• The photovoltaic effect: the modification of the voltage
at the terminals of an illuminated PN junction following
the displacement of the holes and electrons released in
the vicinity of the latter.

• The magnetic induction effect: the variation of the mag-
netic induction flux in an electric circuit induces a
voltage.

• Hall effect: a magnetic field B and a current i create in
the material a potential difference UH .

The limited number of these physical effects serving in the
construction of these types of sensors make them the least
numerous models but the most used because of their ability
to serve in many areas.

The active sensor that we propose in this work uses simul-
taneously the last two physical effects mentioned above
namely: the magnetic induction effect and the Hall effect.
Indeed the coil of the dipole (r0, L0,C0) is crossed by a
variable current i p. The magnetic flux through this coil is
such that Φ = L0.i p. Any variation of the current i p causes
that of Φ which then induces an electric voltage e such that
e = −L0

di p
dt (Magnetic induction effect). Under the effect of

the magnetic field and traversed by the current i p, is created
in the vibrating membrane of the micro-beam a difference
potential ep as defined below (Hall Effect). All these poten-
tial differences thus generated are reinjected into the circuit
and contribute to the burden of capacitor C0 (Fig. 1). Ampli-
tudes of oscillations of electro-mechanical system will be
controlled by a rheostat of the auxiliary generator and the
controlled frequencies by the voltage-frequency converter
that is the Josephson junction. The interemain of this junction
is due to its interemaining features and dynamic modes that
it can generate. Indeed, the Josephson effect since its predic-
tion in 1962 by Brian Josephson has been the subject of an
exhaustive list of scientific research. The dynamic behaviors
and interemaining features of the Josephson junction have
been studied [2–8]. Recently, the dynamics of three and four

non-identical Josephson junctions connected in series and
coupled with an RLC dipole are studied [9]. Our motivations
for this study are also justified by the recently research on
the electromechanical systems. For example, the electrome-
chanical coupling to obtain a MEMS was done by Domguia
et al. [10] where electrodynamic equations, stability analysis
and dynamic behaviors were studied for a MEMS consist-
ing of a micro-beam coupled to an Hindmarsh–Rose electric
oscillator. Yamapi et al. [11] studied the harmonic dynamics
and transition to chaos in a nonlinear electromechanical sys-
temwith parametric coupling. They shown that the dynamics
of their electromechanical system can be described by an
electricalDuffingoscillator coupled gyroscopically andpara-
metrically to a linear mechanical oscillator. Also, Yamapi
and Filatrella [12] studied the noise effect on birhythmique
Josephson junction coupled to a resonator. They have found
that the stability analysis of Josephson junction coupled to a
resonator shows a striking change in the birhythmic region.
The attractor characterized by a frequency locked to the res-
onator is most stable for low bias current, when the power
dissipated in the cavity is small. Inspired by all this litera-
ture, we propose to model and generate the dynamic modes
of an active sensor whose energy losses are compensated by
an auxiliary generator and whose oscillation frequencies are
controlled by a Josephson junction.

In Sect. 2, we establish the electrodynamic equations
of the electric part and of the mechanic part using the
Euler–Bernoulli theories which gives the general equation
of flexural vibration of the beams [10,13]. Section 3, studies
the fixed points and their stabilities using the Routh crite-
ria technique [14]. Considering that depending on the field
of study, it is sometimes useful or undesirable to the point
where many researchers are interemained in the prediction
of chaos and/or its control [15–20], we evaluated and con-
troled some chaotic dynamics of the sensor in Sect. 4. These
etaps will allow us to analyze the influence of each control
parameter in general and of Josephson junctions in particular
on the oscillatory dynamics of the actif sensor. We provided
a conclusion in the last section.

2 Presentation andmodelization of the
MEMS

The MEMS (Fig. 1) that we propose to study is an auxiliary
generator, a Josephson junction and a micro-beam in series
with an oscillator (r, L, C). The objective of this study is to
build a quasi-self-sufficientMEMS energetically. Indeed, the
electric energy of the Joule dipole dissipated by the Joule
effect in the electromechanical system at the ohmic con-
ductors will be partially offset by the energy supply of an
auxiliary generator. The operational amplifier is supposed to
be ideal. We have
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Fig. 1 Device of the self-maintainedMEMSwhere the Josephson junc-
tion is represented by its RCSJ model

i+ = i− = 0 and ε = V+
e − V−

e = 0

Let’s put the auxiliary generator voltageUg and the potential
Vs at the output point of the Operational Amplifier (AO). By
appling the Kirchhoff law for the loop voltage, we obtain

Ug = R0 · i2 + ε,

with

i2 = R1 · i0
R2

.

Thus,

Ug = R0 · R1

R2
· i0 = K · i0.

2.1 Equation of electrical part

Using the current law, we have

i0 = i p + i j , (1)

i0 = h̄

2 e R j

dϕ

dt
+ h̄ C j

2 e

d2ϕ

dt2
+ Ic sin ϕ + i p. (2)

On the other hand,

i p = dq

dt
+ e

rp
with

ep
rp

= −2 B A

μ L

∫ L

o

∂u(z, t)

∂t
dz.

Thus,

i0 = h̄

2 e R j

dϕ

dt
+ h̄ C j

2 e

d2ϕ

dt2
+ Ic sin ϕ + dq

dt
+ e

rp
.

Furthermore, i0 = ug
K

= h̄

2 e K
ϕ̇. We then obtain

h̄ C j

2 e

d2ϕ

dt2
+ h̄

2 e

(
K − R j

R j K

)
dϕ

dt
+ Ic sin ϕ

+ dq

dt
− 2 B A

μ L

∫ L

o

∂u(z, t)

∂t
dz = 0. (3)

Next, the differential equation that governs the charge q
of the capacitor in the circuit is determined. Indeed,

ug = u p + uLo + uCo (4)

and

K (i p + i j ) = (rp · i p − ep) +
(
r0 · i p + L0

di p
dt

)
+ q

c
.

(5)

Replacing i p,
ep
rp

,
di p
dt

by their expressions into Eq.

(5), one obtains:

q̈ +
(
rp + r0 − K

L0

)
q̇ + 1

L0C0
q − K Ic

L0
sin ϕ(t)

−
(
rp + r0 − K

L0

)
2BA

μL

∫ L

o

∂u(z, t)

∂t
dz

+2 B

L0

∫ L

o

∂u(z, t)

∂t
dz − 2 B A

μ L

∫ L

o

∂2u(z, t)

∂t2
dz

−K h̄ C j

2 e L0
ϕ̈(t) − K h̄

2 e L0 C j
ϕ̇(t) = 0. (6)

It can be seen that the coefficient of the dissipative term
of the load depends on K and can be canceled for a value of
R0. For this, setting rp + r0 − K = Δr and ω2

0 = 1
L0 C0

,
we obtain

q̈ + Δr

L0
q̇ + ω2

0 q − 2 B A

μ L

∫ L

o

∂2u(z, t)

∂t2
dz

+
(
2 B

L0
− 2 B A

μ L
· Δr

L0

) ∫ L

o

∂u(z, t)

∂t
dz − K h̄ C j

2 e L0
ϕ̈(t)

− K h̄

2 e L0 R j
ϕ̇(t) − K Ic

L0
sin ϕ(t) = 0. (7)
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2.2 Equation of mechanical part

According to the differential equation of the dynamics of
micro-beams [10,13,21], we have

E · Iy ∂4u(z, t)

∂z4
+ ρA

∂2u(z, t)

∂t2
+ λ

∂u(z, t)

∂t
+ NLT = f (t),

(8)

with

u(z, t): function characterizing transverse displacement;
E : Young’s modulus;
Iy : moment of inertia;
λ: damping coefficient of the beam;

NLT : coefficient of nonlinearity;
f (t): actuating force of the beam;
A : cross-sectional area of the beam;
ρ : Density of the beam assumed to be constant.

In this study, we assume NLT = 0.ı
The actuating force f (t) of the beam is a force of Lorentz

(magnetic) given by:

f (t) = i p · B · L sin(B, l).

As B⊥ l , we have sin(B, l) = 1, we obtain:

f (t) = B × L × i p = B × L ×
(
dq

dt
+ e

rb

)
.

Then

E · Iy ∂4u(z, t)

∂z4
+ ρA

∂2u(z, t)

∂t2
+ λ

∂u(z, t)

∂t

= B × L ×
[
dq

dt
− 2 B A

μ L

∫ L

o

∂u(z, t)

∂t
dz.

]
(9)

2.3 Equations of the dynamical system

The equations that govern the electrodynamic behavior of
the sensor are written as follow:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h̄ C j
2 e ϕ̈(t) + h̄

2 e

(
K−R j
R j K

)
ϕ̇(t) + Ic sin ϕ(t) + q̇

− 2 B A
μ L

∫ L
o

∂u(z,t)
∂t dz = 0,

q̈(t) + Δr
L0

q̇(t) + ω2
0 q(t) − 2 B A

μ L

∫ L
o

∂2u(z,t)
∂t2

dz

+
(
2 B
L0

− 2 B A
μ L · Δr

L0

) ∫ L
o

∂u(z,t)
∂t dz − K h̄ C j

2 e L0
ϕ̈(t)

− K h̄
2 e L0 R j

ϕ̇(t) − K Ic
L0

sin ϕ(t) = 0,

E · Iy ∂4u(z,t)
∂z4

+ ρA ∂2u(z,t)
∂t2

+ λ
∂u(z,t)

∂t

= B × L ×
[
dq
dt − 2 B A

μ L

∫ L
o

∂u(z,t)
∂t dz

]
,

(10)

with (see [22–24]) A = l × w, λ = ωb × mef f

Q

ωb = 2 × π
w

L2 ×
√

E

ρ

Kef f = 32 × E × l × w3

L3 ; mef f = Kef f

ω2
b

The shape of themodesmust satisfy the geometries differ-
ential and boundary conditions [21]. The deflection u(z, t)
of the beam can then be written as follows:

u(z, t) =
∞∑
n=1

Zn(z) Tn(t)

where n indicates the mode of vibration; Tn(t) represents the
generalized coordinate of the amplitudes and Zn(z) the set
eigenfunctions of the equation:

∂4u(z, t)

∂z4
+ ρA

E · Iy
∂2u(z, t)

∂t2
= 0.

In our case we have u(0, t) = u(L, t) = 0 and the set eigen-
functions Zn(z) is written

Zn(z) = an(cos ξn z − cosh ξn z) + bn(sin ξn z − sinh ξn z),

where ξn the solution of the transcendental equation

cos ξn L cosh ξn L − 1 = 0.

As we focus on the study of the ground state, we take for
the remain n = 1. By doing the standardization below

∫ L

0
Z1(z) Zn(z)dz = L3δ1,n =

{
L3 if (n = 1)

0 if not

and let’s η1 = 1

L2

∫ L

0
Z1(z)dz,

the system (10) gives

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ̈(t) + a ϕ̇(t) + ω2
j sin ϕ(t) + b q̇ − c Ṫ = 0

T̈ (t) + f Ṫ (t) + g T (t) − h q̇(t) = 0

q̈(t) + Δr
L0

q̇(t) + ω2
0 q(t) − l1 T̈ (t) + l2 Ṫ (t)

− l3 ϕ̈(t) − l4 ϕ̇(t) − l5 sin ϕ(t) = 0,

(11)

with

a =
(

K − R j

R j K C j

)
; ω2

j = 2 e Ic
h̄ C j

; b = 2 e

h̄ C j
;

c = 4 e B A η1 L

μ h̄ C j
; f =

(
λ

ρ A
+ 2 B2 η21 L

μρ

)
; g = E Iyξ41 η1

ρA L
;
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h = B η1

ρ A
; l1 = 2 B A η1 L

μ
; l3 = K h̄ C j

2 e L0
;

l2 =
(
2 B

L0
− 2 B A

μ L
× Δr

L0

)
η1L

2;

l4 = K h̄

2 e L0 R j
; l5 = K Ic

L0
.

When the micro-beam is excited at a frequency ω equals

to its resonant frequency (ω = ωb), Z1 gives Z1 = f (t) ×Q
Kef f

(see [23,24]). Considering I0 as themaximal amplitude of the
current in f (t), with the above normalisation, one obtains:

η1 = B × I0 × Q

ke f f
.

One of the main objectives of this study is achieved.

Indeed, the coefficient of dissipation of the energy (
Δr

L0
)

and the damping coefficient of the difference phase of the

Josephson junction
(
a = K−R j

R j K C j

)
depend on K which can

be adjusted from the rheostat R0. All the dynamics of this
MEMS can then be controlled from a single rheostat. The
remain of this work will give more details.

After simplification, the system (11), becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ̈(t) + a ϕ̇(t) + ω2
j sin ϕ(t) + b q̇ − c Ṫ = 0

T̈ (t) + f Ṫ (t) + g T (t) − h q̇(t) = 0

q̈(t) + M1 q̇(t) + ω2
0 q(t) + M2Ṫ (t) + M3 T (t)

+M4 ϕ̇(t) + M5 sin ϕ(t) = 0,

(12)

with

M1 =
(

Δr

L0
+ b l3 − h l1)

)
; M2 = (l2 − l3 c + l1 f );

M3 = l1g; M4 = (a l3 − l4); M5 = (ω2
j l3 − l5)

Using the dimensionless variables

τ = ω1 t; β = ϕ

ϕ0
; α = T

T0
; γ = q

Q0
,

we obtain
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

β̈(τ ) + j1β̇(τ ) + j2 sin [ϕ0 β(τ)] + j3γ̇ (τ ) − j4 α̇(τ ) = 0

α̈(τ ) + σ1 α̇(τ ) + σ2 α(τ) − σ3 γ̇ (τ ) = 0

γ̈ (τ ) + ε1 γ̇ (τ ) + ε2 γ (τ) + ε3α̇(τ ) + ε4 α(τ) + ε5 β̇(τ )

+ ε6 sin [ϕ0β(τ)] = 0,

(13)

with

j1 = a

ω1
; j2 = ω2

j

ω2
1 ϕ0

; j3 = b Q0

ω1 ϕ0
; j4 = c T0

ω1 ϕ0
;

σ1 = f

ω1
; σ1 = g

ω2
1

; σ3 = h Q0

ω1 T0
;

ε1 = M1

ω1
; ε2 = ω2

0

ω2
1

; ε3 = M2

ω1 Q0
; ε4 = M3 T0

ω2
1 Q0

;

ε5 = M4 ϕ0

ω1 Q0
; ε6 = M5

ω2
1 Q0

.

3 Fixed points and stability

3.1 Equilibrum points

By setting α̇ = x, y = β̇ and γ̇ = z, Eq. (13) gives:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α̇ = x

ẋ = −σ1 x − σ2 α + σ3 z

β̇ = y

ẏ = −j1 y − j2 sin [ϕ0 β] − j3 z + j4 x

γ̇ = z

γ̇ = −ε1 z − ε2 γ − ε3 x − ε4 α − ε5 y

− ε6 sin [ϕ0β].

(14)

The fixed points of the MEMS are found and we note that
the origin point is a fixed point and that the dynamic system
possesses an infinite number of equilibrium points given by

E∗(α∗, α̇∗, β∗, β̇∗, γ ∗, γ̇ ∗) = E

(
0, 0,

kπ

ϕ0
, 0, 0, 0

)
,

with k is a relative integer.

3.2 Stability of the fixed points

At the fixed point E , the Jacobian is:

J (E∗) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
−σ2 −σ1 0 0 0 σ3
0 0 0 1 0 0
0 j4 −j2 ϕ0 cos [kπ ] −j1 0 −j3
0 0 0 0 0 1

−ε4 −ε3 −ε6 ϕ0 cos [kπ ] −ε5 −ε2 −ε1

⎤
⎥⎥⎥⎥⎥⎥⎦

,

and egeinvalues κ is given by

κ6 + μ6κ
5 + μ5κ

4 + μ4κ
3 + μ3 κ2 + μ2κ + μ1 = 0,

(15)

with

μ1 = ε2σ2j2ϕ0 cos(kπ)

μ2 = σ2j1ε2 + (σ2ε1j2 + σ1ε2j2 − σ2ε6j3
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+ σ3ε4j2)ϕ0 cos(kπ)

μ3 = σ2ε1j1 + σ1ε1j1 + σ2ε2 − σ2ε5j3 + σ3j1ε4

+ (σ1ε1j2 + ε2j2 − σ1ε6j3 + σ3ε6j4

+ σ3ε3j2 + σ2j2)ϕ0 cos(kπ)

μ4 = σ1ε1j1 + σ2ε1 + ε2j1 + σ1ε2 − σ1ε5j3

+ σ3ε5j4 + σ3ε3j1

+ σ3ε4 + σ2j1 + (ε1j2 − ε6j3 + σ1j2)ϕ0 cos(kπ)

μ5 = ε1j1 + σ1ε1 + ε2 − j3ε5 + σ3ε3 + σ1j1

+ j2ϕ0 cos(kπ) + σ2

μ6 = ε1 + j1 + σ1.

The fixed point is stable if the eigenvalues κ are strictly
negative reals or complex numbers with negative real parts or
if all the determinants of Routh–Hurtwitz whose expressions
are defined below are all positive [14].

Rth1 = μ6

Rth2 = μ6 μ5 − μ4

Rth3 = −μ2
4 + μ2 μ6 + μ4μ5μ6 − μ3μ

2
6

Rth4 = −μ2
2 − μ3 μ2

4 + μ2 μ4 μ5 + 2μ2 μ3 μ6 − μ1 μ4 μ6

+μ3 μ4 μ5 μ6 − μ2 μ6 μ2
5 − (μ3μ6)

2 + μ1 μ5 μ2
6

Rth5 = −μ3
2 − μ2 μ3 μ2

4 + μ1 μ3
4 + μ4 μ5 μ2

2 + 2μ3 μ6 μ2
2

− 3μ1 μ2 μ4 μ6 + μ2 μ3 μ4 μ5 μ6 − μ1 μ2
4 μ5 μ6

−(μ2 μ5)
2 μ6

−μ2 (μ3 μ6)
2 + μ1 μ3 μ4 μ2

6

+ 2μ1 μ2 μ5 μ2
6 − μ2

1 μ3
6

Rth6 = [−μ3
2 − μ2 μ3 μ2

4 + μ1 μ3
4 + μ4 μ5 μ2

2 + 2μ3 μ6 μ2
2

− 3μ1 μ2 μ4 μ6 + μ2 μ3 μ4 μ5 μ6 − μ1 μ2
4 μ5 μ6

− (μ2 μ5)
2 μ6 − μ2 (μ3 μ6)

2 + μ1 μ3 μ4 μ2
6

+2μ1 μ2 μ5 μ2
6 − μ2

1 μ3
6]μ1 = Rth5μ1

For the verification of the stability of the fixed points, we
chose to consider experimental values used in the literature
review for the different elements of theMEMS. These values
are recorded in the Tables 1, 2 and 3.

The intensity of the magnetic field B = 4T (see [23])
and the dimensionless coefficients are: Q0 = e

2 ; T0 =
10−20m; ϕ0 = π

3 ; R1 = R2 and R0 = R j

For the different possible values of k, we have calculed the
determinants of the Routh–Hurwitz matrices for each of the
two types of Josephson junctions considered. For k = 2n +
1, n ∈ Z and for both types of junctions it should be noted
that the fixed points are unstable because Rth5 is negative
(see Table 4). For k = 2n, n ∈ Z , all the determinants of the
calculated Routh–Hurwitz matrices are positive and it can
then be concluded that the fixed points are stables.

Table 1 Dimension and important parameters of the silicon micro-
beam of quality factor Q = 104 at 300K (see [23])

Beam Parameters Values

Length (L) 2 · 10−6 m

Width (l) 100 · 10−9 m

Tickness (w) 200 · 10−9 m

Electrical resistivity (μ) 0.2582 Ω m

Volume density (ρ) 2330kgm−3

Young’s modulus (E) 150GPa

All other parameters related to the micro-beam will be calculated on
the basis of formulas well listed in [22] and the above values

Table 2 Values of the critical current (IC j ) and the normal resistance
R j or the different types of Josephson junctions present in the literature
and used for our study

Josephson junction types IC j (μA) R j (Ω)

NCCO [25] 2.2 15

Tricrital [26] 0.114 100

NCCO/Au/In; Tricrital of LCCOFor each Josephson junction, the value
of the capacity C j eis in order of pF . For the calculus, we will take
5pF

Table 3 I0 values (excitation
current amplitude of the micro
beam); capacity C0 of the
capacitor; inductance L0 of the
coil and its internal resistance r0

Parameters Values

I0 5μA

L0 50μH

C0 50pF

r0 5Ω

E∗(α∗, α̇∗, β∗, β̇∗, γ ∗, γ̇ ∗) = E(0, 0,
2nπ

ϕ0
, 0, 0, 0).

The theoretical studies show us that the electro-dynamic
behavior of the dynamic system can be controlled by the
rheostat R0. This dynamic system has several fixed points.
These equilibrium points strongly depend on the phase
difference ϕ of the Josephson junction. Indeed, for k =
2n + 1, the fixed points E∗(α∗, α̇∗, β∗, β̇∗, γ ∗, γ̇ ∗) =
E(0, 0, (2n+1)π

ϕ0
, 0, 0, 0) are unstables and for k = 2n,

the fixed points E∗(α∗, α̇∗, β∗, β̇∗, γ ∗, γ̇ ∗) = E(0, 0, 2nπ
ϕ0

,

0, 0, 0) are stables.

4 Numerical study

We begin this section by illustrating the electro-dynamic
behavior of theMEMSfor the experimental values of the con-
stitutive elements of the selected MEMS. Table 5 illustrates
the values of the control parameters of the system computed
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Table 4 Value of the determinants of the Routh–Hurwitz matrices for
each type of Josephson junction for Q0 = e

2 ; T0 = 10−20m ; ϕ0 = π
3

Type of Josephson
junction and value of k

Value of Rthi

NCCO/Au/In 13.827659759192157

for k = 2n 9.9469709025079567 × 10−3

0.14326651339655427

4.4920838604411983 × 10−7

1.2571035767905414 × 10−8

3.9355671499485823 × 10−14

Tricristal of LCCO 60.744587588248464

for k = 2n 0.84326894812943465

1025.7682792436099

2.2754272720776498

1324.4285297393799

1.5438407058827579

NCCO/Au/In 13.827659759192157

for k = 2n + 1 9.9469709025123976 × 10−3

0.14212239628994894

2.1569028945123137 × 10−6

−2.4715825475141173 × 10−5

7.7359471259419443 × 10−11

Tricristal of LCCO 60.744587588248464

for k = 2n + 1 0.84326894812966202

1025.3421845840203

2.5122808555606753

−1614.8980779647827

1.8824310447089374

according to each type of Josephson junction with the initial
conditions defined as:

γ (0) = 1.60217656.10−19

2
; γ̇ (0) = 0;

α(0) = 10−20; α̇(0) = 0; β̇(0) = 0;
β(0) = 3.141592653589793

3
; B = 4T .

To simplify the analyzes according to the rheostat setting,
we will take R1 = R2 and the normalize time as 1

ω j
ie ω1 =

ω j (see [27]).
In a first step, we analyzed the stability of the fixed points

studied in the analytical part of our work with the same
experimental values taken from the literature. Secondly, we
have illustrated a few different techniques for controlling
the electro-dynamic modes of the micro-system through the
influence of the Josephson junction on the system by adjust-
ment of the rhostat. Tertio, an explanation of the name“Active
Sensor” is given with the different plausible abilities of this

Table 5 Calculus of control parameter values for R0 = K = R j for
each Josephson junction

Types of Josephson junction Values of control parameters

NCCO/Au/In j1 = 0.0000000000000000

j2 =0.95492963197803404

j3 = 1.2714156032474 × 10−3

j4 = 8.3708357073384 × 10−26

ε1 = 13.8276597591815

ε2 = 2.9918727198979 × 10−6

ε3 = 9.1039452296069 × 10−2

ε4 = 6.8877363696306 × 10−23

ε5 = −2.3531823207581 × 10−3

ε6 = 0.0000000000000000

σ1 = 1.0643636599981 × 10−11

σ2 = 1.04615307211515

σ3 = 7.8358256789718 × 10−3

Tricristal of LCCO j1 = 0.0000000000000000

j2 = 0.95492963197803415

j3 = 5.5852991625130 × 10−3

j4 = 3.6772886494638 × 10−25

ε1 = 60.744587588201711

ε2 = 5.7737891480006 × 10−5

ε3 = 0.399932850967665

ε4 = 1.3292122101577 × 10−21

ε5 = −1.0337475182623 × 10−2

ε6 = 1.0002320396609 × 10−17

σ1 = 4.6757247933820 × 10−11

σ2 = 20.188917846518539

σ3 = 3.4422599888324 × 10−2

MEMS. Finally, a study of the influence of some important
parameters of control will be done.

4.1 Electro-dynamic behavior for R0 = K = Rj

When the rheostat is reset such that R0 = R j , j1 which is
the parameter of dissipation of the phase of the Josephson
junction is canceled. Thus, the phase difference losses of the
junction can be corrected from the R0 rheostat of the auxiliary
generator. For each of the junctions used we have presented
the phase diagrams and the times hystories of the main vari-
ables of our electromechanical system in this experimental
condition. The values of the control parameters in this case
are recorded in the Table 5 for each type of Josephson junc-
tion. We have chosen to present this table with the values
of the control parameters calculated at a high order, given
the very high sensitivity of the electrodynamic modes to the
slightest variation of these parameters. Figures 2 and 3 illus-
trate the electrodynamic behaviors respectively for the types
junctions NCCO/Au/In and Tricristal of LCCO.
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Fig. 2 Electrodynamic behavior of the system with R0 = Rj = 15Ω
for the junction NCCO/Au/In a phase space of the flexural vibration of
the micro-beam; b time hystories of the oscillations of the micro-beam;
c phase space of the phase difference of the Josephson junction d times
hystories of the phase difference of Josephson junction; e phase space
of the electric charge of the capacitorC0; f times hystories of the charge
current of the capacitor C0

From Figs. 2 and 3 we note as expected by the analytical
calculations that for j1 = 0, the oscillations of the phase dif-
ference of the Josephson junctions are periodic and harmonic
(see Figs. 2, 3c, d). Themicro-beampresents a quasi-periodic
oscillation well justified by the graphs of the phase spaces
and those of the Poincaré section (Figs. 4, 5) for each type
of junction. We also note that the vibration amplitudes differ
from one junction to another. In fact, for the MEMS with
the NCCO/Au/In type junction, the maximum amplitudes
of the micro-beam reach tens of times those of the MEMS
with the type junction tricristal of LCCO (see Figs. 2, 3a,
b). One could therefore model the amplitudes and even the
oscillation frequencies of the micro-beam of this MEMS by
an efficient choice of the type of Josephson junction used.We
also note a similarity between the phase difference dynamics
of the Josephson junction and that of the electric resonator
(r0, L0,C0) (see Figs. 2, 3e, f).

4.2 Electrodynamic behavior with R0 = K < Rj

In order to deepen the analysis of the influence of the Joseph-
son junction on the system using a simple rheostat, we have
studied each of the cases where the parameter j1 < 0 and

Fig. 3 Electrodynamic behavior of the system with R0 = Rj = 100Ω
for the junction Tricristal of LCCO a phase space of the flexural vibra-
tion of the micro-beam; b time hystories of the oscillations of the
micro-beam; c phase space of the phase difference of the Josephson
junction d times hystories of the phase difference of Josephson junc-
tion; e phase space of the electric charge of the capacitor C0; f times
hystories of the charge current of the capacitor C0

Fig. 4 Poincaré section of the micro beam for R0 = Rj = 15Ω with
the junction NCCO/Au/In

j1 > 0. Indeed, for j1 < 0, one has K = R0 < R j in this
case, amplitudes are amplified not only at the phase differ-
ence of the Josephson junction but also at the level of the
electrical and mechanical oscillations. Figures 6 and 7 illus-
trate this gain in the electrical and mechanical energy of the
system. The graphs (d) and (g) of Figs. 6 and 7 illustrate
once again the similarity between the oscillatory behavior of
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Fig. 5 Poincaré section of the micro beam for R0 = Rj = 100Ω with
the junction Tricristal of LCCO

the phase difference of the junction and that of the capaci-
tor charge C0. We can therefore conclude that the oscillatory
behaviors of the Josephson junction can be visualized on
the screen of an oscilloscope just by visualizing the voltage
across the capacitor C0. In fact, this is justified by the fact
that the phase difference ϕ of the Josephson junction and the
charge q of the capacitorC0 present almost the same paces on
their times hystories. Knowing that uc0(t) = 1

C0
× q(t), one

could thus visualize the modes of oscillations of the phase
difference of the junction through the shape of the voltage at
the terminals of C0. The energy gains can be used in several
areas such as the electric charges of charge micro-capacitors,
and delay actuators. Indeed, the excesses of the charging
current could be recovered by micro-capacitors and used to
supply other micro-systems with energy deficiency. Increas-
ing the oscillation amplitudes of the micro-beam could serve
as a high-precision time delay mechanical actuator. Also, the
indefinite evolution of this system over time could lead to
the breakdown of the C0 capacitor with spark emission. This
phenomenon can be used in the field of military security to
trigger explosions of fuel bombs.

Aside from these interesting characteristics above the
number, the MEMS for some of these values of j1 < 0 (ie
R0 < R j ) presents an interesting and very interesting feature
in the field of information security. Indeed, on Figs. 6 and 7
we observe phase diagrams with random paces and times
hystories with chaotic oscillations. Poincaré section of Figs.
8 and 9 confirm the irregularities and oscillatory imprecision
of the micro-beam for this value of R0.

4.3 Electrodynamic behavior with R0 = K > Rj

When R0 = K > R j , we observe a damping of oscilla-
tory amplitudes at all levels. Although this dynamic does not
present too much physical interest for this MEMS at this

Fig. 6 Electrodynamic behavior with R0 = 14.95Ω < R j for the
junction NCCO/Au/In a phase space of the flexural vibration of the
micro-beam; b time hystories of the oscillations of the micro-beam;
c phase space of the phase difference of the Josephson junction d
times hystories of the phase difference of Josephson junction; e times
hystories of the charge current of the capacitor C0; f times hysto-
ries of the charge of the capacitor C0. j1 = −1.219 × 10−3; j2 =
0.955; j3 = 1.271 × 10−3; j4 = 8.371 × 10−26; ε1 = 13.827; ε2 =
2.992 × 10−6; ε3 = 9.104 × 10−2; ε4 = 6.888 × 10−23; ε5 =
−2.353 × 10−3; ε6 = −1.0366 × 10−18; σ1 = 1.064 × 10−11; σ2 =
1.046; σ3 = 7.836 × 10−3.

time, we have chosen to illustrate the concordance between
analytic studies and numerical simulations with real experi-
mental quantities. Figures 10 and 11 illustrate this negative
loss for NCCO/Au/In junction only.

From all of the foregoing, we can come to the conclusion
that electrodynamic modes of the dsMEMS strongly depend
on the mode of variation of the Josephson junction phase
difference. Indeed as in [28] the graphs above show that the
Josephson junction has a great influence on the dynamics
of the MEMS and that all the electrodynamic modes going
through the chaotic regimes could be obtained just by a sim-
ple adjustment of the rheostat R0

4.4 Practical interests of this MEMS

4.4.1 Measuring of the normal resistance of a Josephson
junction

As previously stated and as already illustrated by Figs. 3, 6, 7,
10 and 11, a small variation in the value of the rheostat in the
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Fig. 7 Electrodynamic behavior with R0 = 99.5Ω < R j for the junc-
tion Tricristal of LCCO a phase space of the flexural vibration of the
micro- beam; b time hystories of the oscillations of the micro-beam; c
phase space of the phase difference of the Josephson junction d times
hystories of the phase difference of Josephson junction; e times hystories
of the charge current of the capacitorC0; f times hystories of the charge
of the capacitor C0. j1 = −1.207 × 10−3; j2 = 0.955; j3 = 5.585 ×
10−3; j4 = 3.677 × 10−25; ε1 = 60.744; ε2 = 5.774 × 10−5; ε3 =
0.399; ε4 = 1.329 × 10−21; ε5 = −1.0337 × 10−2; ε6 = 5.001 ×
10−18; σ1 = 4.6757 × 10−11; σ2 = 20.1889; σ3 = 3.442 × 10−2

Fig. 8 Poincaré section of the micro beam for R0 = Rj = 14.95Ω
with junction NCCO/Au/In

vicinity of the valueof the normal resistance R j of the Joseph-
son junction induces remarkable effects on the type of both
mechanical and electrical oscillation of the MEMS. Indeed,

Fig. 9 Poincaré section of the micro beam with R0 = 99.5Ω < R j for
the junction Tricristal of LCCO

we have already mounted how most of the dynamic modes
can be visualized through the voltage across the capacitor
C0. Thus, when the rheostat would be set to the approxi-
mate value of R j , the voltage across the capacitor C0 would
present harmonic and periodic oscillations as shown in the
graphs (f) of Figs. 2 and 3. As an example, we have chosen
to show an example for a variation (ΔR0 = −0.1) with the
Tricristal of LCCO junction. Figure 11 shows the difference
between the periodic mode obtained for R0 = R j = 100Ω
(see Fig. 3) and that obtained for R0 = 99.9.

We see that for this small variation of ΔR0 in the neigh-
borhood of R j , the periodic and harmonic oscillations of Fig.
3 are lost at all levels

4.4.2 Influence of the temperature of the micro-beam on
the mechanical and electrical oscillations of the
system

We have evaluated the influence of the temperature on the
mechanical and electrical oscillations of the system since the
control temperature is a very important factor in several fields
such as chemistry, aeronautics, agro-food industries, stor-
age centers, air-conditioning systems and others. Indeed, the
strong correlation between the temperature and the resistivity
of semiconductors is well established. If, in pure semicon-
ductors, the growth of the temperature induces the growth of
the resistivity electric power, the opposite effect is observed
in silicon (see [29]). To highlight this temperature-resistivity
relationship, we have plotted the curves giving the maxima
of the amplitude of vibration of the micro-beam and the load
current of the capacitorC0 in order to appreciate the influence
of the temperature on the micro-system (see Fig. 12).

It can be seen that the maximum amplitudes of the
variables of the two resonators (electrical and mechanical)
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Fig. 10 Electrodynamic behavior with R0 = 15.2Ω > R j for the junc-
tion NCCO/Au/In a phase space of the flexural vibration of the micro-
beam; b time hystories of the oscillations of the micro-beam; c phase
space of the phase difference of the Josephson junction d times hysto-
ries of the phase difference of Josephson junction; e phase space of the
electric charge of the capacitor C0; f times hystories of the charge cur-
rent of the capacitorC0. j1 = 4.798×10−3; j2 = 0.955; j3 = 1.271×
10−3; j4 = 8.371 × 10−26; ε1 = 13.827; ε2 = 2.992 × 10−6; ε3 =
9.104 × 10−2; ε4 = 6.888 × 10−23; ε5 = −2.353 × 10−3; ε6 =
−1.0366×10−18; σ1 = 1.064×10−11; σ2 = 1.046; σ3 = 7.836×10−3

increasewith the decrease of the electrical resistivity. In other
words, the oscillatory amplitudes decrease with the growth
of the temperature. Since the micro-beam, given its physical
characteristics, would be very sensitive to the variation of
the temperature and this variation of the temperature induces
that of its electrical resistivity, we can say that this micro-
machine could serve as a good active sensor of temperature.
Indeed, the physical quantity that is the temperature is cap-
tured by the micro-membrane vibrating of the micro-beam
and transcribed in electrical signal which is expressed by an
increase of the amplitudes of the current of load and the elec-
tric voltage at the terminals of the capacitor C0. This effect
is accentuated when the electrical resistivity μ < 0.25Ω/m.
In other words, when the temperature is less than 25 oC, a
small variation of the latter causes a considerable increase
in the magnitude of the charging current and the electrical
voltage across the capacitor C0. This feature could give the
MEMS capabilities to serve as a temperature sensor in the
field of cryogenics, aeronautics and air conditioning. The
considerable load gain observed for these temperatures could

Fig. 11 Electrodynamic behavior with R0 = 99.9Ω for the junction
Triscristal LCCO a phase space of the flexural vibration of the micro-
beam; b phase space of the phase difference of the Josephson junction; c
phase space of the electric charge of the capacitor C0; d times hystories
of the charge current of the capacitor C0

Fig. 12 Variation of the maximum amplitudes of mechanical oscil-
lations (A) and those of electricity (I) as a function of the electrical
resistivity of the silicon micro-beam for the junction NCCO/Au/In with
R0 = R j = 15Ω

also be used to charge micro-electrical systems in temperate
zones. As generally mentioned in the literature, the thermal
production of electricity is due to the rise in temperature,
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the particularity of this MEMS would then be its capacity
to increase its electricity production when the temperature
drops further.

4.4.3 Influence of the magnetic field on the mechanical and
electrical oscillations of the system

We are finally interested in the reaction of the MEMS in the
absence of a magnetic field and also in the presence of mag-
netic fields weaker than that used so far. Indeed, to increase
the sensitivity of the silicon membrane, we chose to reduce
its electrical resistivity for these simulations. Thus, the least
forces could excite considerably the vibrating membrane
of the micro-beam. We then examined the electro-dynamic
behavior of the MEMS for B = 0T ; B = 10−2T and
B = 10−1T . Figures 13, 14 and 15 illustrate MEMS electro-
dynamic behaviors for these values of B respectively.

For B = 0T as expected, we see that the micro-beam
has a static motion (see Fig. 13b). The membrane of the
micro-beam remained in its chosen initial position for our
simulations. For B = 10−2T there is an almost periodic
oscillation of the micro-beam (see Fig. 14b) with a low
frequency of vibration. The oscillation frequency of the
mechanical resonator (micro-beam) is in this case much
lower than that of the electric resonator (see Fig. 14b, f).
For B = 10−1T , the dynamics are qualitatively similar to the
previous one but major quantitative differences are observed.
The maximum amplitudes of oscillations of the micro beam
go from 1.5 × 10−8 to 3.5 × 10−7 (magnitude without unit
because dimensionless) and the oscillation frequency of the
micro-beam is more than the triple of those obtained for

Fig. 13 Electrodynamic behavior with μ = 2.5× 10−3 Ω m; B = 0T ;
R0 = 15Ω for the junction NCCO/Au/In. a Time hystories of the
oscillations of the micro-beam; b phase space of the phase difference
of the Josephson junction c times hystories of the charge current of the
capacitor C0

Fig. 14 Electrodynamic behavior with μ = 2.5 × 10−3 Ω m; B =
0.01T ; R0 = 15Ω for the junction NCCO/Au/In. a phase space of the
flexural vibration of themicro-beam; b time hystories of the oscillations
of the micro-beam; c phase space of the phase difference of the Joseph-
son junction d times hystories of the charge current of the capacitor C0

Fig. 15 Electrodynamic behavior with μ = 2.5 × 10−2 Ω m; B =
0.1T ; R0 = 15Ω for the junction type NCCO/Au/In. a phase space
of the flexural vibration of the micro-beam; b time hystories of the
oscillations of the micro-beam; c phase space of the phase difference
of the Josephson junction d times hystories of the charge current of the
capacitor C0

B = 10−2T ; from 12 periods to 38 (see Figs. 14b, 15b).
From all these observations, it can be concluded on the one
hand that the mechanical part of this MEMS is very sensi-
tive to the slightest variation of the magnetic field. We note
a conversion of the variation of the magnetic field in fre-
quency oscillation. This feature could give the MEMS the
function of a magnetic field transducer. On the other hand, as
shown in the Figs. 14b and 15b the two energy self-sufficient
MEMS resonators can simultaneously oscillate at different
frequencies. This could be a very useful property in the field
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of signal processing. Indeed, since the oscillation frequency
of the micro-beam can be modeled by means of a uniform
magnetic field, this MEMS could offer capabilities to simul-
taneously process multi-frequency signals.

5 Conclusion

This study focused on aMEMS sensor essentially consisting
of a Josephson junction, a microbeam, a dipole (R,L,C) and
an auxiliary generator. Our goal in this work is to model an
energy-efficient MEMS capable of playing the role of a tem-
perature and/or magnetic field sensor B. Indeed, a feature of
this MEMS we propose is its ability to convert low temper-
atures into electrical energy. The influence of the Josephson
junction on the electromechanical oscillations frequencies of
this MEMS has been illustrated. It is obtained that the con-
servation or not of the energies of this active sensor can be
controlled bymeans of a simple rheostat of the auxiliary gen-
erator. For this dynamic system, an infinite number of fixed
points is obtained. Through the phase spaces, we have shown
that the dynamic behaviors of the micro-beam are strongly
related to those of the Josephson junction. The chaotic behav-
ior of one induces that of the micro-beam. The influence of
each control parameter has been studied and some dynamics
have been illustrated. It goes out of this study also that several
chaotic regimes have been obtained.
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