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PELL FACTORIANGULAR NUMBERS

Florian Luca, Japhet Odjoumani, and Alain Togbé

Abstract. We show that the only Pell numbers which are factoriangular are
2, 5 and 12.

1. Introduction

Recall that the Pell numbers {Pm}m>1 are given by

Pm =
αm − βm

α − β
, for all m > 1,

where α = 1 +
√

2 and β = 1 −
√

2. The first few Pell numbers are

1, 2, 5, 12, 29, 70, 169, 408, 985, 2378, 5741, 13860, 33461, 80782, 195025, . . .

Castillo [3], dubbed a number of the form Ftn = n! + n(n + 1)/2 for n > 1 a
factoriangular number. The first few factoriangular numbers are

2, 5, 12, 34, 135, 741, 5068, 40356, 362925, . . .

Luca and Gómez-Ruiz [8], proved that the only Fibonacci factoriangular numbers
are 2, 5 and 34. This settled a conjecture of Castillo from [3].

In this paper, we prove the following related result.

Theorem 1.1. The only Pell numbers which are factoriangular are 2, 5 and 12.

Our method is similar to the one from [8]. Assuming Pm = Ftn for positive
integers m and n, we use a linear forms in p-adic logarithms to find some bounds
on m and n. The resulting bounds are large so we run a calculation to reduce
the bounds. This computation is highly nontrivial and relates on reducing the
diophantine equation Pm = Ftn modulo the primes from a carefully selected finite
set of suitable primes.
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2. p-adic linear forms in logarithms

Our main tool is an upper bound for a non-zero p-adic linear form in two
logarithms of algebraic numbers due to Bugeaud and Laurent [1]. Let η be an
algebraic number of degree d over Q with minimal primitive polynomial over the
integers

f(x) := a0

d
∏

i=1

(X − η(i)) ∈ Z[X ],

where the leading coefficient a0 is positive and the η(i), i = 1, . . . , d are the conju-
gates of η. The logarithmic height of η is given by

h(η) :=
1

d

(

log a0 +

d
∑

i=1

log(max{|η(i)|, 1})

)

.

Let K be an algebraic number field of degree dK. Let η1, η2 ∈ K r {0, 1} and

b1, b2 positive integers. We put Λ = ηb1

1 − ηb1

2 . For a prime ideal π of the ring OK

of algebraic integers in K and η ∈ K, we denote by ordπ(η) the order at which π
appears in the prime factorization of the principal fractional ideal ηOK generated
by η in K. When η is an algebraic integer, ηOK is an ideal of OK. When K = Q,
π is just a prime number. Let eπ and fπ be the ramification index and the inertial
degree of π, respectively, and let p ∈ Z be the only prime number such that π | p.
Then

pOK =
k
∏

i=1

π
eπi

i , |OK/π| = pfπi , dK =
k
∑

i=1

eπi
fπi

,

where π1 := π, . . . , πk are prime ideals in OK. We set D := dK/fπ. Let A1, A2 be
positive real numbers such that

log Ai > max
{

h(ηi,
log p

D

}

(i = 1, 2).

Further, let

b′ :=
b1

D log A2
+

b2

D log A1
.

With the above notation, Bugeaud and Laurent proved the following result (see [1,
Corollary 1 to Theorem 3]).

Theorem 2.1. Assume that η1, η2 are algebraic integers which are multiplica-

tively independent and that π does not divide η1η2. Then

ordπ(Λ) 6
24p(pfπ − 1)

(p − 1)(log p)4 D5(log A1)(log A2)

×
(

max
{

log b′ + log(log p) + 0.4,
10 log p

D
, 10
})2

.

In the actual statement of [1], there is only a dependence of D4 in the right-
hand side of the above inequality, but there all the valuations are normalized. Since
we work with the actual order ordπ(Λ), we must multiply the upper bound of [1]
by another factor of dK/fπ = D.
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3. Proof of Theorem 1.1

We study the Diophantine equation

(3.1) Pm = Ftn.

We may assume that n > 10, since the smaller values can be checked by hand.
Before proving our main result, let us prove some preliminary results that are
useful for the proof of Theorem 1.1.

Lemma 3.1. The following inequalities

(3.2) αn−2 6 Pn 6 αn−1

hold for all n > 1.

Proof. Follows immediately by induction on n. �

Further (see [8]), the inequalities
(

n
e

)n
6 Ftn 6 nn hold for all n > 3. Taking

logarithms, the above inequalities yield

(3.3) n(log n − 1) < log
(

n! +
n(n + 1)

2

)

< n log n,

for all n > 3. Inequalities (3.2) imply (m − 2) log α 6 log Pm 6 (m − 1) log α. Using
(3.1), we get that for positive integers m, n satisfying (3.1) and n > 10, we have

(m − 2) log α 6 log
(

n! +
n(n + 1)

2

)

6 (m − 1) log α.

Combining the last inequality above with (3.3), one has

n(log n − 1) < (m − 1) log α and (m − 2) log α < n log n.

Hence,

(3.4) 1 +
n(log n − 1)

log α
< m < 2 +

n log n

log α
.

If n 6 100, the above inequality implies that m 6 525. We listed all Pell
numbers Pm with m 6 525 and all factoriangular numbers Ftn with n 6 100 and
intersected these two lists. All solutions in this range of (3.1) are listed in the
Theorem 1.1.

We assume from now on that n > 100. Rewriting (3.1) as

αm − βm

2
√

2
= n! +

n(n + 1)

2
,

we get, after some algebraic manipulations using the fact that β = −α−1, that
(

2
√

2
)

n! = α−m
(

α2m − n(n + 1)
√

2αm + εm

)

,

where εm := (−1)m+1 ∈ {±1}. We note that

α2m − n(n + 1)
√

2 αm + εm = (αm − z1)(αm − z2),

where

(3.5) z1,2 :=
n(n + 1)

√
2 ±

√

2n2(n + 1)2 − 4ǫ

2
.
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Thus, equation (3.1) is equivalent to

(2
√

2)n! = α−m(αm − z1)(αm − z2).

Let K = Q(z1) and let π be a prime ideal lying above 2 in OK. As α is unit and
π | 2, one has

(3.6) ord2(n!) 6 ordπ(2
√

2n!) 6 ordπ(αm − z1) + ordπ(αm − z2).

We use Theorem 2.1 to get an upper bound on ordπ(αm − zi), for i = 1, 2. We fix
i ∈ {1, 2} and put

η1 := α, η2 := zi, b1 := m, b2 := 1, Λi := αm − zi.

Note that z1z2 = ǫ. Then z1, z2 and α are all units so π cannot divide any of
them. Further, these three numbers belong to K. Next we prove that α and zi are
multiplicatively independent for i = 1, 2. Of course, since z2 = ±z−1

1 , it suffices to
show that this is so only for i = 1. Well, note first that since n > 100, it follows
that ∆ > 0. Let d be that positive squarefree integer such that for some positive
integer u we have ∆ = 2n2(n + 1)2 − 4ǫ = du2. Since the left–hand side above is a
multiple of 4 and d is squarefree, it follows that 2 | u. Then, using (3.5), we have

z1 = A
√

2 ± B
√

d,

where

(A, B) = (n(n + 1)/2, u/2) ∈ Z2.

Hence, z2
1 = C + D

√
2d, where C, D are integers. However, since z2

1 ∈ Q(2
√

d) and

α ∈ Q(
√

2) and they are multiplicatively dependent, it follows that d ∈ {1, 2}. The
case d = 2, leads to

u2 − (n(n + 1))2 = −2ε,

or

(u − n(n + 1))(u + n(n + 1)) = −2ε,

which is impossible since the left–hand side above is an integer multiple of the
number u + n(n + 1) > 1002. The case d = 1 leads to

(u

2

)2
− 2
(n(n + 1)

2

)2
= −ε ∈ {±1}.

Hence, (X, Y ) := (u/2, n(n+1)/2) is a positive integer solution of the Pell equation

X2 − 2Y 2 = ±1.

It is known that Y = Pk for some k > 1. Hence, Pk = n(n + 1)/2 is a triangular
number. Luckily all Pell triangular numbers have been found by McDaniel [9].

Lemma 3.2 (Theorem [9]). If Pk is triangular then k = 1.

Since for us n > 100, it follows that the equation Pk = n(n+1)/2 is impossible.
This proves that indeed z1 and α are multiplicatively dependent.

Thus, K = Q(
√

2,
√

d) has dK = 4. Further, since the discriminant of K is even
(because 2 ramifies in Q(

√
2) ⊆ K), it follows that for our prime ideal π, we have

fπ > 2 and so D = dK/fπ 6 2.
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Next, we calculate upper bounds for the logarithmic heights of α and zi. The
minimal primitive polynomial of α over the integers is x2 −2x−1, so h(α) = 1

2 log α.

Since α > 2, one can take log A1 = 1
2 log α. Next, the minimal primitive

polynomial of zi over the integers is z4 + (−2n2(n + 1)2 + 2ǫ)z2 + 1. Its roots are
either

±Tn

√
2 +

√

2T 2
n + 1 and ± Tn

√
2 −

√

2T 2
n + 1,

or

±Tn

√
2 +

√

2T 2
n − 1 and ± Tn

√
2 −

√

2T 2
n − 1 < 1.

Here, we put Tn = n(n + 1)/2 for the nth triangular number. In both cases, two
of the roots are in absolute value larger than 1 and the other two are in absolute
value smaller than 1. Since

Tn

√
2 +

√

2T 2
n + 1 = Tn

√
2

(

1 +

√

1 +
2

n2(n + 1)2

)

< n2.1,

for n > 100, we deduce that

h(zi) =
1

4

( 4
∑

j=1

log
(

max{|z(j)
i |, 1}

)

)

6
1

4
(log n2.1 + log n2.1) = 1.05 log n,

for i = 1, 2. So one can take log A2 = 1.05 log n and therefore

b′ =
m

2.1 log n
+

1

log α
.

From (3.4), one has

m < 1.135 n logn + 2 < 1.15 n log n

(since n > 100). We then get

b′ <
(1.15

2.1

)

n + 1.135 <
4n

7
,

and so

log b′ + log log 2 + 0.4 < log(4n/7) + log(log 2) + 0.4 < log n.

Thus,

max
{

log b′ + log log 2 + 0.4,
10 log 2

2
, 10
}

equals max{log n, 10} because 5 log 2 < log n for n > 100. From Theorem 2.1, we
get

ordπ(Λi) <
24 × 2 × (22 − 1) × 25

(2 − 1)(log 2)4 (0.5 log α)(1.05 log n)(3.7)

× (max{log n, 10})2 < 9236.98(max{log n, 10})3, for i = 1, 2.

In order to use inequality (3.6), we need a lower bound to ord2(n!). It is well known
that

ord2(n!) =
⌊n

2

⌋

+
⌊n

4

⌋

+ · · · +
⌊ n

2t

⌋

+ · · ·
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Since for n > 2k, we have
⌊ n

2k

⌋

>
n

2k
− 2k − 1

2k
.

we conclude, using the fact that n > 100 > 24,

(3.8) ord2(n!) >

4
∑

k=1

( n

2k
− 2k − 1

2k

)

=
15n − 49

16
>

7n

8
.

Assuming further that log n > 10 (that is, that n > 22027) and combining in-
equalities (3.6), (3.7) and (3.8), we obtain n < 21114(log n)3, which leads to
n 6 139212946.

In summary, we proved the following result.

Lemma 3.3. Let (n, m) be a solution of Diophantine equation (3.1) with n >
100. Then,

1 +
n(log n − 1)

log α
< m < 2 +

n log n

log α
and n 6 1.4 × 108.

Let ⌊x⌉ denote the nearest integer to the real x. It follows that the positive
integer solutions (m, n) of the Diophantine equation (3.1) with n > 100 are such
that (n, m) belongs to

[101, 1.4 × 108] ×
[⌊

1 +
n(log n − 1)

log α

⌉

,
⌊

2 +
n log n

log α

⌉]

.

The bounds for n and m are too large to verify our Diophantine equation (3.1) even
computationally. To reduce these bounds we use the procedure described in [8].
First, (3.1) is equivalent to

Pm = n!
(

1 +
n + 1

2(n − 1)!

)

and by the arguments in [8], if (m, n) is a solution of (3.1) with n > 100, then

(3.9) m =

⌊

(

n + 1
2

)

log n − n + log(
√

2π)

log α

⌉

+ 1.5 + δ,

with δ ∈ {−0.5, 0.5}. We consider two cases for n ∈ [101, 1.4 × 108].

Case 1. n ∈ [101, 5.6×105]. For each n in this interval, we generate the list of
Pm (mod 1020) (i.e., we keep only the last 20 digits of the Pell numbers Pm), where
m is given by (3.9). So, since n! ≡ 0 (mod 1020), we explored computationally the

congruence n(n+1)
2 ≡ Pm (mod 1020).

A brief calculation in Maple reveals that the above equation has no solutions
in this range. Thus, our Diophantine equation (3.1) has no solutions in this range.
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Case 2. n ∈ [5.6 × 105, 1.4 × 108]. It is easy to check that for all m ≡ m′

(mod 8), one has Pm ≡ P ′

m (mod 8). That is, the Pell sequence is periodic modulo
8 with period 8.

We set A := 25 × 32 × 52 × 7 × 11. We found all primes p ≡ 1 (mod 8) such
that p − 1 | A. They are

17, 41, 73, 89, 97, 113, 241, 281, 337, 353, 401, 601, 617, 673, 881, 1009,

1201, 1321, 1801, 2017, 2521, 2801, 3169, 3361, 3697, 4201, 5281, 7393,

9241, 12601, 15401, 18481, 19801, 55441, 79201, 92401, 110881.

For each prime p above, Pm is periodic modulo p and the period of the Pell
sequence modulo p divides A. Hence, if (n, m) is a solution of Diophantine equation

(3.1) with n > 5.6 × 105, then n! ≡ 0 (mod p). Further, n(n+1)
2 ≡ Pm (mod p)

is equivalent to 8Pm + 1 ≡ (2n + 1)2 (mod p). However, a search in Maple shows
that for each m ∈ [2, A], there is a prime p in the above list such that the Legendre
symbol

(8Pm + 1

p

)

= −1

except for m = 1.
We conclude that the only possible values of n ∈ [5.6 × 105, 1.4 × 108], which

can be solutions of the Diophantine equation (3.1) satisfy the conditions

(3.10)
n(n + 1)

2
≡ 1 (mod A), m ≡ 1 (mod A).

One generates the set N1 of residue classes for n (mod A) fulfilling (3.10) obtaining:

N1 = {1, 16798, 26398, 43198, 66526, 75073, 83326, 91873, 92926, 101473,

109726, 118273, 141601, 158401, 168001, 184798, 184801, 201598,

211198, 227998, 251326, 259873, 268126, 276673, 277726, 286273,

294526, 303073, 326401, 343201, 352801, 369598, 369601, 386398,

395998, 412798, 436126, 444673, 452926, 461473, 462526, 471073,

479326, 487873, 511201, 528001, 537601, 554398}.

So, we have the following result.

Lemma 3.4. If n ∈ [5.6×105, 1.4×108] and (n, m) is a solution of Diophantine

equation (3.1), then n ≡ n0 (mod A) and m ≡ 1 (mod A) where A = 25 × 32 ×
52 × 7 × 11 and n0 ∈ N1. Futhermore,

m =

⌊

(

n + 1
2

)

log n − n + log(
√

2π)

log α

⌉

+ 1.5 + δ,

with δ ∈ {−0.5, 0.5}.

We analyzed computationally equation (3.1) with the restrictions n = n0+A×t
with

1 6 t 6
⌊1.4 × 108

A

⌋

, n0 ∈ N1, m ≡ 1 (mod A).
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For this, we first fixed n and checked whether m given by (3.9) satisfies indeed m ≡ 1
(mod A). If this doesn’t happen, we can discard n. In the very few cases when this
actually happened, we checked directly (3.1). An extensive computational search
with Maple showed that equation (3.10) has no other solutions than the ones from
the statement of Theorem 1.1. This completes the proof of Theorem 1.1.
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