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ANALYSIS OF FORCED VIBRATIONS OF NONLINEAR PLATES
IN A VISCOELASTIC MEDIUM UNDER THE CONDITIONS
OF THE DIFFERENT COMBINATIONAL INTERNAL
RESONANCES

Marina V. Shitikova, Vladimir V. Kandu
Voronezh State Technical University, Voronezh, RUSSIA

Abstract: In the present paper, the force driven dynamic response of a nonlinear plate embedded in a
viscoelastic medium, damping features of which are described by the Kelvin-Voigt fractional derivative model,
is studied. The motion of the plate is described by three coupled nonlinear differential equations with due
account for the fact that the plate is being under the conditions of the internal combinational resonance
accompanied by the external resonance, resulting in the interaction of three modes corresponding to the mutually
orthogonal displacements. A comparative analysis of numerical calculations for the cases of free and forced

vibrations has been carried out.

Keywords: Nonlinear vibrations of thin plates, interaction of internal and external resonances, fractional
derivative viscoelastic surrounding medium, combinational internal resonance

YU CJEHHBIN AHAJIN3 BHIHY ) KJIEHHBIX HEJIMHEWHbBIX
KOJEBAHUMH IIVIACTUHOK B BSI3KOYIIPYT'ON CPEJE
TP HAJINYNU KOMBUHAIIMOHHOI'O PE3OHAHCA

M.B. Illumuxkosa, B.B. Kanoy

Bopounexckuii rocy1apcTBEHHbIN TEXHUYECKUH yHUBEpcUuTeT, T. Boponex, POCCUA

AnnoTtanus: VccienoBaHel HETWHEWHBIC BBIHYXKICHHBIC KOJICOAHMS TOHKHX IUIACTHUHOK B BS3KOYIPYTOW cpene,
neMIrupyIonre CBOWCTBA KOTOPOH 3aJaloTcsi ¢ MOMOINbI0 Mojenu KemsBuHa-®oiirta ¢ IpoOHON MTPOU3BOIHOM.
Komnebannss IUIacTHHKH B BSA3KOYNPYTOH Cpele ONMCBHIBAIOTCS B JCKAPTOBCKOH CHCTEME KOOPAHMHAT TPEMs
nuddepeHInaTbHBIMA  YPABHEHUSAMH, C YYETOM TOrO, YTO IUIACTUHKA HAXOJWTCS B YCIOBUSAX BHYTPEHHETO
KOMOHWHAIIMOHHOTO PE30HaHCa, COMPOBOXIAEMOTO BHENIHUM pe30HaHCOM. I[IpuWBeleH CpaBHUTENbHBIN aHAIHM3
YUCJIEHHBIX HWCCJICIOBAHUNA CBOOOMHBIX W BBIHYXJCHHBIX KOJeOaHWW TpW HAIWYUU PA3THYHBIX KOMOMHAIIMOHHBIX
BHYTPEHHUX PE30HAHCOB IS PA3TUYHBIX TEOMETPUUIECKUX MTAPaMETPOB TUTACTUHKH.

KiroueBble ¢10Ba. HEMHEHBIE KOJIEOAHUS IJIACTUHOK, COYCTAaHUEC BHYTPCHHCTO U BHCIIHETO PE30HAHCOB,
ﬂpO6Haﬂ MMpoOU3BOJHA, KOM6PIHaIIPIOHHLII7[ PE30HaHC

1. INTRODUCTION

Recently the interest to nonlinear dynamic
response of viscoelastic plates or elastic plates
vibrating in a viscoelastic surrounding medium
has been greatly renewed due to the appearance
of advanced materials exhibiting nonlinear
behaviour, and a comprehensive review in the
field, including experimental results, could be

found in [1-6]. In so doing the damping forces
are usually taken into account via the
Rayleigh's hypothesis [1,7], resulting in the
modal damping [8], i.e. it is assumed that each
natural mode of vibrations possesses its own
damping coefficient dependent on its natural
frequency. For describing the viscoelastic
features of plates, the Kelvin-VVoigt model [4]
or standard linear solid model [5] are of
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frequent use In  engineering  practice
considering either linear or nonlinear springs in
viscoelastic elements [9].

The analysis of free undamped [10] and damped
[4] vibrations of nonlinear systems is of great
importance for defining the dynamic system's
characteristics dependent on the amplitude-
phase relationships and modes of vibration.
Moreover, nonlinear vibrations could be
accompanied by such a phenomenon as the
internal resonance, resulting in strong coupling
between the modes of vibrations involved [10-
15] and hence in the energy exchange between
the interacting modes.

The internal resonance could be observed in the
case of some combination of natural frequencies
of one and the same type of vibrations. Thus,
nonlinear vibrations of rectangular plates,
dynamic behaviour of which is described by von
Karman equations in terms of the plate's
deflection and stress function, have been
considered in [12] by reducing the governing
equations to a set of two modal equations
applying the Galerkin procedure. The case of
the one-to-one internal resonance (when
frequencies of two modes of flexural vibration
are equal to each other) accompanied by the
external resonance (when the frequency of the
harmonic force is close to one of the natural
frequency) has been studied.

The one-to-one internal resonance has been
investigated also in [13] and [14] for nonlinear
vertical vibrations of rectangular plates under
the action of harmonic forces acting in the
plate's plane [13] and out of the plate's plane
[13,14], in so doing a set of three equations in
terms of two in-plane displacements and
deflection and a set of five equations
considering the shear deformations have been
used in [13] and [14], respectively. However,
considering the inertia forces only for vertical
vibrations and utilizing the Galerkin procedure,
in both papers a set of two nonlinear equations
has been obtained in terms of two flexural
modes, which are assumed to be coupled via the
one-to-one internal resonance.
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For the first two natural modes of flexural
vibrations, the cases of the 1:2 and 1:3 internal
resonances have been also studied in [14].
Another type of the internal resonance has been
investigated by Rossikhin and Shitikova [15-
18], when one frequency of in-plane vibrations
is equal (the 1:1 internal resonance [17,18]) or
two times larger (the 1:2 internal resonance
[15,18]) than a certain frequency of out-of-plane
vibrations. As this takes place, a set of three
nonlinear differential equations in terms of three
mutually orthogonal displacements has been
used considering inertia of all types of
vibrations, what allows the authors to study
further the combinational resonances of the
additive and difference types [16,19-20].
Combinational types of the internal resonance
result in the energy exchange between three or
more subsystems. It should be noted that
investigations in this direction were initiated by
Witt and Gorelik [21], who pioneered in the
theoretical and experimental analysis of the
energy transfer from one subsystem to another
using the simplest two-degree-of-freedom
mechanical system, as an example.

Moreover, in order to study nonlinear free
damped vibrations of a thin plate, the
viscoelastic Kelvin-Voigt model involving
fractional derivative [22] has been utilized,
since this model possesses the advantage over
the conventional Kelvin-Voigt model [10-14],
because it provides the results matching the
experimental data. Thus, for example,
experimental data on ambient vibrations study
for the Vincent-Thomas [23] and Golden Gate
[24] suspension bridges have shown that
different modes of vibrations possess different
magnitudes of damping coefficients. Besides,
the increase in the natural frequency results in
the decrease in the damping ratio. In order to
lead the theoretical investigation in the
agreement with the experiment, in 1998 it was
suggested in [25] to utilize the fractional
derivatives to describe the processes of internal
friction occurring in suspension combined
systems, what allowed the authors in a natural
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way to obtain the damping ratios, which depend
on natural frequencies.

Nowadays fractional calculus is widely used for
solving linear and nonlinear dynamic problems
of structural mechanics, what is evident from
numerous studies in the field, the overview of
which could be found in the state-of-the-art
articles by Rossikhin and Shitikova [26,27],
wherein the examples of adopting the fractional
derivative Kelvin-Voigt, Maxwell and standard
linear solid models are provided for single-mass
oscillators, rods, beams, plates, and shells.

In particular, linear vibrations of Kirchhoff-
Love plates with the Kelvin-Voigt fractional
damping were considered for rectangular and
circular plates, respectively, in [28] and [29]
using one equation for vertical vibrations, while
utilizing three equations of in-plane and
transverse vibrations in [7,30], and later
multiplate systems were analyzed in [26,31]. It
has been proved [27,32] that if viscoelastic
properties of plates are described by the Kelvin-
Voigt model assuming the Poisson’s ratio as the
time-independent value (though for real
viscoelastic materials the Poisson's ratio is
always a time-dependent function [33]), then
this case coincides with the case of the dynamic
behaviour of elastic bodies in a viscoelastic
medium. Thus, the authors of [28,29], and not
only them, replaced one problem with another,
namely: a problem of the dynamic response of
viscoelastic ~ Kirchhoff-Love plates in a
conventional medium with a problem of
dynamic response of elastic Kirchhoff-Love
plates in a viscoelastic medium, damping
features of which are governed by the fractional
derivative Kelvin-VVoigt model. The vibration
suppression of fractionally damped thin
rectangular simply supported plates subjected to
a concentrated harmonic loading has been
studied recently in [34] in order to minimize the
plate deflection, in so doing the vibration
suppression is accomplished by attaching
multiple absorbers modelled as the Kelvin-
Voigt fractional oscillators, i.e. generalizing the
approach suggested in [26,31].
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As for the analysis of nonlinear vibrations of
plates, then except the above mentioned papers
[15-20], the fractional derivative Kelvin-Voigt
model was used in [35-40] and fractional
derivative standard linear solid model in
[6,41,42] but without considering the
phenomena of the internal resonance. Thus, free
and forced vertical vibrations of an orthotropic
plate have been studied in [35] considering first
four modes of flexural vibrations, and during
the analysis of force driven vibrations the
frequency of a harmonic force was assumed to
be equal to one of natural frequencies. The von
Karman plate equation with fractional derivative
damping was utilized in [36] for analyzing the
cases of primary, subharmonic  and
superharmonic resonance conditions, when the
harmonic force frequency, respectively, is
approximately equal, three times less or larger
than the first or second natural frequency of
vertical vibrations. Nonlinear random vibrations
of the same plate was studied in [39]. Dynamic
nonlinear response to random excitation of a
simply supported rectangular plate based on a
foundation, damping features of which are
described by the fractional derivative Kelvin-
Voigt model, has been considered in [38]. The
analysis of chaotic vibrations of simply
supported nonlinear viscoelastic plate with
fractional derivative Kelvin-Voigt model has
been carried out in [40] for the case when the
plate is subjected to an in-plane harmonic force
in one direction and a transverse harmonic
force. The Galerkin decomposition has been
used to obtain the modal equation of the system,
in so doing the authors restricted themselves
only by the first mode. The fractional derivative
standard linear solid model has been utilized in
[42] for a viscoelastic layer for active damping
of geometrically nonlinear vibrations of smart
composite plates using the higher order plate
theory and finite element method with
discretizing the plate by eight-node
isoparametric quadrilateral elements.

In the present paper, the approaches suggested
in [18] for solving the problem on free nonlinear
vibrations of elastic plates in a viscoelastic
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medium, damping features of which are
governed by the Riemann-Liouville derivatives
of the fractional order, and in [43] for studying
the dynamic response of the fractional Duffing
oscillator subjected to harmonic loading are
generalized for the case of forced vibrations of a
simply-supported nonlinear thin elastic plate
under the conditions of different combinational
internal resonances, when three natural modes
corresponding to  mutually  orthogonal
displacements are coupled.

2. PROBLEM FORMULATION

2.1. Governing equations.

Let us consider the dynamic behavior of a
simply supported nonlinear thin rectangular
plate, vibrations of which in a viscoelastic
fractional derivative medium are described by
the following three differential equations in the
dimensionless form [44, 45]:

1-v 2

Uy +Tﬂl yy ﬂl xy ﬂl Wy xy

1)
1-v ¥
+W, | W, +—— 5 ﬂl w | = U+aDgu,
2 l1-v 1+v
ﬂl Vyy + Vxx + ﬂluxy :Blwx xy
2

)

2 1-v N 14
+,Blwy (ﬂl wy + TWXX) =V+a&,D,V,
ﬂ—;(w +28°wW,, .+ Biw, ) —

2 XXXX 1 " xxyy 1 "Vyyyy
_Wxx(u + Vﬂlvy) - Wx(uxx + Vﬂlvxy) -
1 v
B Wy (B, )+ W, (B, +V,) |-
% I:W (vu, + BV, ) +Ww, (vu,, + ﬁlvyy)] -
1 v
AWy (B, +v,) + W (Bu,, +v,) |-

—F5(x— Xo)S (Y — ¥,) cOs(Qpt) =

=—W—&,D] W,
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where and

u=u(x,y.t), v=v(xVyt),
W:W(x, y,t) are the displacements of points

located in the plate's middle surface in the x-, y-,
and z-directions, respectively, v is the Poisson's
ratioo f =al/b and p,=h/a are the

parameters defining the dimensions of the plate,
a and b are the plate's dimensions along the x-
and y-axes, respectively, h is the thickness, t is
the time,

F = FS(X—%,)3(y — ¥,) cos(Qt)

is the harmonic force applied at the point with
the coordinates x,,y,, F and Q. are its

amplitude and frequency, respectively, ¢ is the
Dirac delta function,

& = syt (1=1,2,3)

are damping coefficients, & is a small
dimensionless parameter of the same order of
magnitude as the amplitudes, g, are finite

values, 7, is the relaxation time of the ith

generalized displacement, D/, is the Riemann-
Liouville fractional derivative of the y-order

[46], an overdot denotes the time-derivative,
and lower indices label the derivatives with
respect to the corresponding coordinates.

For solving nonlinear governing equations of
motion (1)-(3), the procedure resulting in
decoupling linear parts of equations has been
proposed with the further utilization of the
method of multiple scales [18,44,45], in so
doing the amplitude functions are expanded into
power series in terms of the small parameter and
depend on different time scales. It H4) been
shown that the phenomenon of internal
resonance could be very critical, since in the
thin plate under consideration the internal
resonance is always present. Moreover, its type
depends on the order of smallness of the
viscosity involved into consideration [18]. The
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following types of the internal resonance have
been revealed:

of the order of ¢

the two-to-one internal resonance (1:2)

o, =20, (0,+0,0,#20,),

(5)

w, =20, (0, #w, o #20,);

the one-to-one-to-two internal resonance
(1:1:2)

o = w, =20, (6)

of the order of &°:
the one-to-one internal resonance (1:1)

=0, (0,#0,0,#0,),
=0, (0,*0,0,#0,), (7)
w,=0, (o*0,0*w,);
the one-to-one-to-one internal resonance
(1:1:1)

W = @, = Wy, (8)

the combinational resonance of the additive-

difference type

20, = 0 + @, 9)
20, = 0, — 0,, (10)
20, =, — @y, (11)

where o, and @, are the frequencies of certain

modes of in-plane vibrations in the x- and y-
axes, respectively, and a, is the frequency of a

certain mode of vertical vibrations.

Note that the cases of the internal resonances
(4)-(7) have been studied recently by the authors
in [44,45,47,48]. Thus, below we will examine
in detail all possible cases of the combinational
resonances (8)-(10).
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2.2. Combinational resonance of the additive
type 20, = @, + o,

Now let us consider the case of the additive
internal combinational resonance (8)
accompanied by the external resonance, i.e.,

— 2
20, =0, + 0, +25°C
and
. 2
Qr =, +&°0¢,

where o is the detuning parameter
characterizing the nearness between the natural

frequencies of the coupled modes, and o is the

second detuning parameter defining the
difference between the frequency of vertical
vibrations and the frequency of the external
force Q3. .

Using the set of solvability equations to
eliminate secular terms similarly to the case of
free vibrations considered in [18] and adding the
external resonance, we obtain the following
solvability equations for the case of force driven
vibrations:

2ie D, A +/”1(ia)171)7 A +2§1(k5 + k7)Ai%'&3 +

+2¢ kA A2 exp(2ioT, ) =0,
(12)

2i,D, A, + 11, (i, Ay +28, (K +kq ) A AR, +

+2¢,k, A A; exp(2ioT,) =0,
(13)

2i0,D,A; + 14, (ia)sz's)y A+

+ Cia (K + 2K, ) + o (Ky + 2k, ) JAZA +

+815 (Ks + K7 ) AAA + o (Ks + kg ) AAA, +(14)
+(&aks + ks ) AA A exp(-2ioT, ) -
—2fexp(io.T,)=0,

where D, =0/0T, is the time-derivative due to
the utilization of the generalized method of
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multiple time scales [18], A(T,) (j=12,3)
are unknown complex functions, ¢;,¢,,¢3,$5

are coefficients depending on the plate
dimensions and numbers of excited modes [18],

k,(p=12,..8) are coefficients depending on
the natural frequencies of plate, and f
finite value.

To eliminate exp(+2ic,T,) from equations
(11)-(13), let us introduce the substitution

is a

A(T,)=Aexp(—ioT,). (15)

Representing the functions A(T,) in equations
(11)-(13) in the polar form

A(T,) =4 (Tz)eXpLi(Pi (Tz)J (i=1273)

and separating real and imaginary parts yield

2

(af) +sa) = —20;'¢ k,a,2,8; sin &, (16)

(a2) +s,a = -2, k,,3,a5 sin 5, (17)

(aF) +s4a3 =-2fw;"a;sin B, + 19

+@; (§l3k8 + ks ) 8,8,a; Sin S,

.1 -

(P17£21+a’11§1(k5+k7)a§+ (19)
+a)1‘1§1k8a1‘1a2a§ CosJ,

) 1 _

(ozfgﬂ-z"'wzlé’z(ke"'ks)a:’?"' (20)

+,'¢,k,a,a,'a; cos S,

) 1 1
§037§/13+Ea)31§13(k5+k7)a12+
1
+§w3l§23(k6+k8)a22+
1
+5 o (K + 2K, )+ Co (K + 2K, ) |27 + (21)

1
+E 23 l(é/lsks +é/23k7)a1a2 CosS —

—f (m,a,) " cos B, +o,
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where a dot denotes differentiation with respect
to T,, a and ¢, are amplitudes and phases,
respectively,

O0=20,—p,— ¢
is the phase difference,

s = ur o sing, w=ayl2,
4 = wr] o cosy, and f, =, — (0 +0)T,.

The set of Egs. (15)-(20) describes the phase-
amplitude modulations at nonlinear forced
vibrations (1)-(3) in the case of the additive
combinational resonance (8), and it is the
generalizations of the case of free vibrations
considered in detail in [19].

2.3. Combinational resonances of the
difference type 20, = 0, — o,
Now let wus consider the difference

combinational resonance (9) accompanied by
the external resonance, i.e. when

— 2
20, =0, —w, + 20
and
_ 2
Qr =w,+¢°0¢.

Then eliminating secular terms, we obtain the
following solvability equations:

2i0D,A + 1 (io7,) A +2¢, (Ks+K, ) AAA +
+2¢,ks A A exp(2ioT, ) =0,

(22)
2iw,D,A, + 14, (ia)sz)y A +2¢, (ke + ks) AzAs'E‘s +
+28,k, AA; exp(-2ioT,) =0,

(23)
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2i0,D,A; + 14, (ia)32'3)y A+

[5;13(k1 +2k2)+§23(k3 +2k4)]A32& +

+81 (Ks + Ky ) AAA + o (ke +Kg ) AAA +(24)
+(S1ks + Coakr) AAA, exp(-2ioT,) -
—2fexp(io.T,)=0.

Applying to (21)-(23) the same procedure as it

has been done above for (11)-(13), as a result,
we have

(a7) +s.87 = —20; "¢ ;28,8350 5, (25)
(aj ) +s,85 = 2w, "¢, k,aa,a’sin g, (26)
(aF) +sa3 :—meglassin,-BaJr n
+a)?:l (§13k6 + é/zsk7)a1aza§ siné,
1 .
¢17_ﬂ1+a)11§1(k5+k7)a§+ (28)
+a, ¢ K8, a,a’l cos o,
¢2:§ﬂ?+a)2*1§2(k6+k8)a32+ 9)
+w£l§2k7a1agla§ COS I,
1 1
75/13_%5603 Ca(ks +k;)ay +
+% @, ¢y (ks +Kg )5 + 0y +
1
+5 0 1[413(k1 +2K, ) + &g (Ky + 2k4)]a32 n
1
+5 0)3 (§13k + oK )313-2 COSO — (30)

—f (w,3;) cos 3,
where & =2¢,+@, — ¢,

is the phase difference.

The set of Eqs. (24)-(29) describes the phase-
amplitude modulations at nonlinear forced
vibrations (1)-(3) in the case of the difference
combinational resonance (9).
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2.4. Combinational resonances of the
difference type 20, = o, — @
Now let us consider the difference

combinational resonance (10) subjected to the
external resonance, i.e. when

— 2
20, = w,—w, +25°C

and
2
Qr =w,+¢°0¢.

In this case the solvability equations have the
form

2i0D,A + 14 (i) A +28, (ks +k, ) AAA +
+2¢ kA A exp(-2ioT,) =0,
(31)
2i0,D,A, + w, (iw,7, ) A, +2&, (ks +Kg ) ALAA +
+2¢,k A A exp(2ioT,) =0,
(32)
2iw,D, A, + 1, (w,7,)" A +
+[ Cia (K + 2K, ) + S (K + 2K, ) | ATA, +
+é]a(ks + k7) Ai'EiAs + & (ka + ks) Az'z‘zAs +(33)
+(§13k8 + é/zsks) AAA, eXp(_ZiO'Tz)_
-2 fexp(io.T,)=0.

Applying to (29)-(31) the same procedure as it has
been done above for (11)—(13), as a result, we
have

( 2)+531 20, ¢ k2,82 sin 5, (34)
(a2) +s,82 = 20, k,a,028in 5, (35)
( ) =-2fw;'a,sin B, + 36)
+tawy (Cl3k +¢ 55K )a8,a; sin &,

(/’1%0'1+a)1‘14’1(k5+k7)a§+ -

+a)1_l§ 1ksa1_la2a32 Cos o,

137



o1 _
¢2:Eﬂ-z+wzlé’2(k6+k8)a32+ (38)

+w, ¢ K.a,a,'aZ cos s,

@, %/134-% @, "¢ (ks +k;)al +

+% @; Gy (Ks +ks)al +o,+

+% @, [ 1 (K +2K,) + & (ks + 2K, ) |a2 +(39)

1
+E @, l(glsks +§23k5)a1a2 COSO —

—f (w,8;)  cos f,,
where 6 = 2¢, +¢, — @,

is the phase difference.

The set of Egs. (33)-(38) describes the phase-
amplitude modulations at nonlinear forced
vibrations (1)-(3) in the case of the difference
combinational resonance (10).

3. NUMERICAL CALCULATIONS

The differential equations (15)-(20), (24)-(29)
and (33)-(38) describing the phase-amplitude
modulation for the additive and difference
combinational resonances (8)-(10) have been

Marina V. Shitikova, Vladimir V. Kandu

solved numerically using the Runge-Kutta
fourth-order algorithm at different magnitudes
of the fractional parameter y. The geometrical
parameters of the plate utilized for calculations
are given in Table 1 for three types of the
combinational resonance for three types of
plates: square, rectangular and oblong.

The envelopes of the amplitudes for all nine
examples presented in Table 1 are shown in
Figures 1-9 for free ( f =0) and forced ( f #0)
vibrations, wherein solid, dotted and dashed

lines correspond to the functions a,(T,), a,(T,)

and a(T,), respectively, allowing one to trace

the energy exchange between three interacting
modes coupled by the additive-difference
combinational resonances (8)-(10).

The time T,-dependence of the amplitude

envelopes for a rectangular plate with the
dimensions a = 0.57 m and b = 0.1425 m (cases
Ne 1,4 and 7 in Table 1) are shown in Figures 1,
4 and 7 at f =10 for three types of the

combinational resonance. It is seen that the most
unfavorable is the difference combinational
resonance

20, =0, — @,

Table 1. Plate parameters which satisfy the combinational resonance condition.

Nel o m | n @, m, | N, m; | ng | & b, h, v
m m m

Combinational resonance: 2w, = @ + w, and force amplitude level f =10

1] 157 | 3 1 929 | 3 | 11333 | 6 |1 ]057] 01425 | 0.0513 | 0.3

213783 | 9 1 |44953| 3 | 3 |41668| 3 | 3 [1.14| 0.1425 | 0.0285 | 0.3

311692 | 5 2 119 | 4 | 511425 | 4 | 3 ]1025| 0.25 0.05 0.3
Combinational resonance: 2w, = @, — w, and force amplitude level f =10

4 | 4215 | 6 3 114985 1 | 2 |13324| 6 | 1 |0.57 | 0.1425 | 0.0513 | 0.3

5110058 | 1 4 14985 1 | 1 | 4165 | 3 | 3 |1.14] 0.1425 | 0.0285 | 0.3

6 132345 9 5 4156 | 1 | 2 |14245| 4 | 3 |025| 0.25 0.05 0.3
Combinational resonance: 2w, = m, — o, and force amplitude level f =1

7 126842 | 3 2 47639 9 | 6 | 1051 | 5 |1 057 01425 | 0.0513 | 0.3

8 125328 | 1 1 |61.783| 9 | 4| 183 | 1 | 2 |114| 0.1425 | 0.0285 | 0.3

91702 |1 1 |13142| 5 | 5] 28 | 2 | 1]025| 0.25 0.05 0.3
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a) | o b) | ch b —y=0 -+v=05

0 0.2 0.4 0.6 T2 % 0.2 0.4 0.6 T2
Figure 1. Amplitude envelopes of (a) free and (b) forced vibrations for plate N/ at the initial
amplitudes a, =0.5.

a) | ChEo b) | ch et —4=0 —v=0.5

0.4}
0.3}
0.2}

0.1}

0 ‘ ‘ ‘ . . ) s . s s s )
0 01 02 03 04 05 T2 T T 05 03 05 T
Figure 2. Amplitude envelopes of (a) free and (b) forced vibrations for plate N2 at a, =0.5.

a) | 0t b) | ;s

0 0.2 0.4 0.6 T2 0 0.2 0.4 0.6 T2
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since it provides the essential increase in
dimensionless amplitudes, resulting in high
level of stresses and strains.

The time T,-dependence of the amplitude

envelopes for an oblong plate with dimensions
a=1.14 m and b=0.1425 (cases 2, 5 and 8 in
Table 1) is presented in Figures 2, 5 and 8 at
f =10, whence it follows that the additive

combinational  resonance is the  most
unfavorable, while the difference resonances
result in the monotonic variation of
dimensionless amplitudes.

As for a square plate (cases 3, 6 and 9 in Table
1), then all types of the combinational resonance
influence equally on the amplitudes variation
with time.

4. CONCLUSION

In the present paper, nonlinear force driven
vibrations of thin plates in a viscoelastic
medium have been studied, when the motion of
the plate is described by a set of three coupled
nonlinear differential equations subjected to the
condition of the combinational resonance
accompanied Dby the external resonance.
Nonlinear sets of resolving equations in terms of
amplitudes and phase differences have been
solved numerically using the Runge-Kutta
fourth-order algorithm. The influence of
viscosity on the energy exchange mechanism
between interacting modes has been analyzed. It
has been revealed that plates of different
dimensions behave in a different manner under
the additive and difference combinational
resonances. Rectangular plates are more
sensitive to plate’s dimensions than square ones.
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