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 Cross-site scripting has caused considerable harm to the economy and 

individual privacy. Deep learning consists of three primary learning 

approaches, and it is made up of numerous strata of artificial neural networks. 

Triggering functions that can be used for the production of non-linear outputs 

are contained within each layer. This study proposes a secure framework that 

can be used to achieve real-time detection and prevention of cross-site 

scripting attacks in cloud-based web applications, using deep learning, with a 

high level of accuracy. This project work utilized five phases cross-site 

scripting payloads and Benign user inputs extraction, feature engineering, 

generation of datasets, deep learning modeling, and classification filter for 

Malicious cross-site scripting queries. A web application was then developed 

with the deep learning model embedded on the backend and hosted on the 

cloud. In this work, a model was developed to detect cross-site scripting 

attacks using multi-layer perceptron deep learning model, after a comparative 

analysis of its performance in contrast to three other deep learning models 

deep belief network, ensemble, and long short-term memory. A multi-layer 

perceptron based performance evaluation of the proposed model obtained an 

accuracy of 99.47%, which shows a high level of accuracy in detecting cross-

site scripting attacks. 
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1. INTRODUCTION 

Cross-site scripting (XSS), whose title can be clearly distinguished from the cascade style sheets 

(CSS), has been discovered to be a consistent susceptibility in web applications that enables cyber hackers to 

insert harmful scripts into webpages to allure the attention of victims who may likely end up clicking them. 

Over the years, the XSS has been recorded as one of the open web application security project (OWASP) top 

10 vulnerabilities [1]. XSS attacks would endanger the internet users ' protection, resulting in the loss of 

useful and sensitive information and user sessions. There are three XSS vulnerability types; document object 

model (DOM) XSS, reflected XSS, and stored XSS. The most frequently seen XSS type is the reflected XSS, 

whereby harmful scripts are transcribed into the URL to be used where an attacker invites the user, and the 

user clicks on such links. For stored XSS attack type, a destructive code is injected into the input data by the 

attacker also, the data stored in the database. It exploits the vulnerability by creating a duplicate webpage that 

correlates to the intended data and attacks users who access the webpage. The DOM-based XSS would be 
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considered a unique instance of reflected XSS; the harmful coded script inserted by the attacker tends to 

change the document object model (DOM) and ends up harming the web client [2].  

Cloud is an integrated and virtualized data network that is dynamically supported and viewed as a 

single or multiple centralized cloud services. Cloud computing contracts are supported by service-level 

agreements which are provided by the cloud service providers (CSPs) to the cloud users, and they govern the 

quality of service that is to be expected from the CSPs, by the customers [3], [4]. The primary cloud 

computing service offerings include software-as-a-service (SaaS), platform-as-a-service (PaaS), and 

infrastructure-as-a-service (IaaS). There are four cloud deployment models and cloud services: private, 

public, community, and hybrid clouds [3], [5]. Cloud computing, in its various offerings, has been adopted 

globally, and a lot of web applications are being deployed on cloud infrastructure [6]. This ubiquitous nature 

of cloud computing is reflected in the wide range of applications that utilize their platforms, which range 

from entertainment-based applications to time-critical health-based applications [7], [8]. 

Deep learning (DL) is categorized as a division of machine learning (ML) and is made up of three 

learning methods, i.e., unsupervised, semi-supervised, and supervised [9]. Consist of strata of artificial neural 

network (ANN), each layer has some neurons with activation functions that result in non-linear outputs; an 

approach that is influenced by the human brain's neuronal structure [10], [11]. Deep learning has been an 

emphasis for numerous scholars and corporations in recent years compared to traditional approaches to 

machine learning. In Mohammadi et al. [12] four ML algorithms were utilized to evaluate deep learning; 

namely, K-means, decision trees, support vector machine (SVM), and logistic regression, all using Google 

trends. The outcomes revealed deep learning as "computationally increasingly efficient." Deep learning 

algorithms are widely used in several domains for classification and prediction purposes [13]. This paper 

presents a secure framework for real-time detection and prevention of XSS attacks on cloud-based web 

applications, using deep learning, with a high level of accuracy. The subsequent portions of the paper are as 

shown in: related work is discussed under section 2; section 3 examines the deep learning framework, and 

section 4 is a conclusion of the paper. 

 

 

2. RELATED WORK 

In Kronjee, et al. [14], a WIRECAML method to detect structured query language (SQL) injection 

and cross-site scripting vulnerability in web applications running hypertext preprocessor (PHP) was 

examined. The tool combines machine learning algorithms with data flow analysis. Also, they obtain 

sufficient data from the National vulnerability database and the SAMPLE dataset to generate a dataset that 

includes an amount of source code files from PHP. Second, the tool analyses file present in the dataset using 

the Phply to create abstract syntax trees (ASTs). Control flow graphs (CFGs) are then generated based on the 

ASTs and uses data flow analysis techniques to extract features from CFGs. In conclusion, the extracted 

features are added to work and test out a range of different classifiers. This approach realizes a 79% precision 

rate and a 71% recall rate in terms of Cross-site scripting, not a very satisfying result. 

According to Shar, et al. [15], presents a machine learning-based tool called Php Miner, which 

predicts web application XSS vulnerabilities. The tool can also detect File Inclusion vulnerabilities, Remote 

Code Execution vulnerabilities, and structured query language injection (SQLi) based vulnerabilities. The 

tool operates based on a combined method of static and dynamic analysis. The code used for validation and 

sanitization activites possesses features and attributes that can be utilized for vulnerability prediction. The 

code attributes and their capacities to be used for vulnerability prediction are the primary principles of 

operation. These attributes and features are known as input validation and sanitization (IVS) attributes. A 

node within the control flow graph indicates the interaction between a statement and other components like 

databases is known as a sink. The hybrid analysis is used for information extraction from sinks. Static 

analysis is used for calculating sink slices. Sanitization functions and validation function types are inferred 

via the use of dynamic analysis. The information generated via the hybrid analysis is categorized according 

to the various IVS features and attributes and is placed in a set of attributes for these classifications. Lastly, a 

supervised predictor and another semi-supervised predictor are constructed for the prediction of web 

vulnerabilities. The method achieves a 9 percent false score for predicting XSS vulnerabilities, which is quite 

high and can be improved to a higher level.  

Khalid, et al. [16], presents a network vulnerability detection approach called NMPREDICTOR. 

Machine learning algorithms are utilized by this method, alongside the combination of various models of 

prediction. This experiment's data set is known as the vulnerability dataset of the hypertext preprocessor 

(PHP). The method is divided basically into two sections. In the first tier, six different models are created 

from the training set by NMPREDICTOR, which are then used to predict the vulnerability status. By 

implementing a supervised learning method, the training set data are classified as vulnerable or not. PHP 

source files are taken as input by the various models and they each output a probability which serves as the 

target probability of the file. The method also uses results from the six models within the second tier to create 
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another model known as a meta classifier. The precision rate of 84.9% and the recall rate of 85.1% both serve 

as the best results from their approach.  

Shailendra, et al. [17], the authors proposed an XSS vulnerabilities detection technique centered on 

machine learning algorithms, which can be used in social networking services (SNSs). Next, they described 

and separated XSS features into three categories: standard url features, hypertext markup language (HTML) 

tag features, and SNS features. Thirdly, their method collected 1000 SNS web pages to create datasets, and 

features, which consisted of 400 benign web pages and 600 malicious web pages. Finally, machine learning 

algorithms were used for the data training phase, and the outcomes generated were graded. The authors 

utilized ten machine learning algorithms to conduct the experiments. The best results derived from the 

experiment were a 97.2% accuracy rate and an 87% false-positive rate. However, it was observed that the 

dataset utilized was too small.  

Wang, et al. [18], an approach to machine learning for detecting Cross-site Scripting in social 

networks was discussed. They manually removed the characteristic features of the web pages; categorized 

them into distinct four groups with each group comprising multiple attributes, where three of them are then 

associated with an online social network; also, adaptive boosting (AdaBoost) was utilized, and a 10-fold 

cross-validation ADTree algorithms; using AdaBoost, the highest recorded values of 0.941 precision value 

and 0.939 recall value were realized. These results depicted a false-positive rate of 4.20%, high, and a 

shallow detection rate. 

Fang, et al. [19], an approach called deep XSS was used for the detection of cross-site scripting 

(XSS) based on deep learning. This approach, which entails decoding, generalization, and tokenization 

techniques, was examined. First of all, word2vec, an extraction application, was used to extract the XSS 

payloads features. These Cross-site Scripting payloads captured word order information, and each payload 

was linked to a characteristic vector. Using recurrent neural networks from long short-term memory (LSTM), 

the detection model was trained and tested. Using this approach, the experimental results showed a precision 

rate of 99.55% with a recall rate of 97.9% and an F1 score of 98.7%. Nonetheless, the webpage contained 

JavaScript and HTML code, which are principally sub-standard encoding; hence, word vectors' adoption 

made the training process too time-consuming and tedious. Their research was not extended to detection in 

real-time, either. 

Goswami, et al. [20] examined a method of XSS attack detection based on the clustering of 

unsupervised attributes, using the Monte Carlo cross-entropy algorithm as the aggregation of ranks. This 

method was used to classify clusters into two classes, namely, malicious scripts and benign scripts. This 

method initially utilized a certain degree of heterogeneity for XSS vulnerabilities tests on the client. If the 

tests exceeded a given threshold value, the request is jettisoned. Otherwise, the request is forwarded to the 

proxy for additional processing. One downside of this approach is identifying client and proxy servers, 

thereby lacking flexibility in its mode of operation. Furthermore, the method interferes with system usage. 

 

 

3. MATERIALS AND METHOD 

3.1.  Deep learning methods 

The research method, the design and development of the deep learning model, and the tool 

employed in building the cloud-hosted web application are all discussed in this section. The primary aim, as 

earlier specified, is the development and implementation of a prototype of a model that can perform real-time 

detection of XSS attacks for cloud-based web applications that utilize deep learning to ensure a secured 

system. This section offers an overview of the proposed method and adapted framework used to implement 

the model, a detailed overview of the model architecture, and finally, the system's design and analysis. For 

this research, deep belief network (DBN), MLP, and LSTM deep learning models will be adopted. 

 LSTM: has distinct units in the recurrent hidden layer referred to as memory blocks [21]. It is used to 

decide when to let the input enter the neuron, remember what was computed in the previous timestamp, 

and let the output pass on to the next timestamp [12], [21]. 

 DBN: is made up of a visible layer that corresponds to the inputs and many hidden layers that correspond 

to latent variables [22]. DBN training is conducted layer by layer; therefore, every layer is treated as a 

Restricted Boltzmann machine, which is trained on top of the previous layer that was trained [12], [23]. A 

DBN may also be advanced for cataloging problems under supervised learning [22]. Similar NLP related 

tasks, for example, classification of text, are performed by DBN models. The models can learn multiplex 

features within hidden layers and gather more compound functions, which are then used for data 

demonstration [24]. DBN uses RBM for planning [23]. 

 Multi-layer perceptron (MLP): is a neural feed-forward network with many hidden (multi-layer) layers. 

Hidden layers in MLP are fully connected, i.e., each node in each layer is associated with a specific 

weight to each node of the layer below [25], [26]. 
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3.2.  Neural networks notations 

The deep learning representation and the forward and backward propagation is shown below. The 

following are the neural network notations [27].  

General comments: 

Superscript (i) shows the ith training example while superscript [l] shows the lth layer 

Sizes: 

·m: number of instances in the dataset 

·nx: the size of the input  

·ny: the size of the output (or number of classes) 

𝑛_ℎ ^([𝑙]): number of hidden units of the lth layer 

In a for loop, it is possible to denote 𝑛_𝑥=𝑛_ℎ ^([0]) and·ny = ·nh [number of layers +1]. 

·L: number of layers in the network. 

Objects: 

·X ∈ Rnx×m is the input matrix 

·x(i) ∈ Rnx is the ith example represented as a column vector 

·Y ∈ Rny×m is the label matrix 

·y(i) ∈ Rny is the output label for the ith example 

·W[l] ∈ R is the number of units in the next layer × number of units in the previous layer is 

the weight matrix, superscript [l] indicates the layer 

·b[l] ∈ R is the number of units in the next layer is the bias vector in the lth layer 

·yˆ ∈ Rny is the predicted output vector. It can also be denoted a [L] where L is the 

network's number of layers. 

 

Forward propagation in (1)-(3): 

 

a=g[l] (Wxx (i) +b1)=g[l] (z1) where g[l] denotes the lth layer activation function (1) 

 

 yˆ(i)=softmax(Whh+b2) (2) 

 

J(x,W,b,y) or J(yˆ,y) denote the cost function. (3) 

 

3.3.  Deep learning representations 
Forward propagation means propagating the computations of all neurons within all layers moving 

from left to right. The process starts with converting your feature vector(s)/tensors into the input layer and 

ends with the final prediction generated by the output layer. Forward pass computations occur during training 

to evaluate the objective/loss function under the current network parameter settings in each iteration and 

during inference (prediction after training) when applied to new/unseen data. Intermediate variables are 

sequentially calculated and stored within the neural network's computational graph by forwarding 

propagation. Forward propagation progresses from the input to the output layer [27]. Backward propagation 

is a step executed during training to compute the objective/loss function gradient for the network's parameters 

for updating them during a single iteration of some form of gradient descent. When viewing a neural network 

as a computation graph, it is named because computing the objective/loss function derivatives at the output 

layer. It propagates them back towards the input layer to compute results and update all parameters in all 

layers. Backpropagation has performed an essential role in ANNs since 1982. It is a very effective gradient 

descent method [28]. It calculates and stores the gradients of intermediate variables and parameters 

sequentially, within the neural network, and in a reversed order [27]. 

a. Nodes represent inputs, activations, or outputs 

b. Edges represent weights or biases 

 

3.4.  Metrics for model performance  

The accuracy, ROC-AUC, precision, recall, and F1-Score measures are used as metrics for evaluation. 

 Accuracy: the overall effectiveness, precision, and efficacy of the classification model can be described as 

accuracy [29], [30].  

 ROC-AUC: ROC is a probability curve, and AUC represents the degree or measure of separability. They 

indicate how well a model can differentiate amongst classes [30]. 

 Precision: this is the ratio of predicted positives, which are accurately positive [30]. 

 Recall: also known as "sensitivity or true positive rate," speak of the amount of positively predicted actual 

positive occurrences [29], [30]. 
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 F-Measure: the "F-measure" is recognized as the unifier means of precision and recall [29], [30].  

 

3.5.  Adapted model architecture 

The adapted model architecture is by [17] titled "XSS Classifier: An efficient XSS attack detection 

approach based on machine learning classifier on social networking services SNSs." Their framework was 

dependent upon machine learning classifiers to classify webpages into two classes, namely, XSS or non-XSS. 

It covers four distinct steps entirely: feature engineering, collection of webpages, generation of datasets, and 

machine learning classification. The overview is depicted in Figure 1. 
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Figure 1. Adapted model architecture 

 

 

In their method, XSS attack detection was performed using three features: URLs, websites, and 

SNSs. A dataset was prepared by collecting about 1,000 SNS web pages and removing the features from 

those web pages. Ten different machine learning classifiers were used in a trained dataset to categorize web 

pages into two groups: XSS or non-XSS. It was tested using precision and an F1 score to validate the 

performance. 

 

3.6.  Proposed model architecture 

The proposed model architecture is adapted from [17] is depicted in Figure 2. Their model 

architecture comprises four key steps; feature engineering, collection of webpages, generation of datasets, 

and machine learning classification. The proposed framework utilized the three (3) phases from the adapted 

framework by [17]: Feature engineering, generation of datasets, and classification. 
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Figure 2. Proposed model architecture 
 

 

a. XSS payloads and benign user inputs extraction: These are activities intended to generate a dataset for 

deep learning model training. XSS payloads are malicious queries hackers' type informs to have an illegal 

effect could consist of a web application. Benign user inputs are typical queries that appear in a web form. 

Extraction of payloads data would be from online repositories, the building of web crawlers for payloads 

data extraction from logged XSS websites, and manual curation of the dataset. 
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b. Feature engineering: this includes feature extraction techniques to extract relevant indicators from the 

payloads to be fed into the deep learning model. Explorative data analysis (EDAs) of the dataset should 

come before the feature engineering stage to gain insights on what features are relevant for extraction or 

transformation. 

c. Generation of datasets: the dataset is separated into training and testing sets. 

d. Deep learning modelling (DBN, LSTM, and MLP): after successfully extracting relevant features, these 

algorithms above would be used individually to train models for XSS input detection. Based on the 

evaluation of the testing dataset, the best performing model would be picked for use in the web 

application. 

e. Ensemble learning: this involves combining the DBN, LSTM, and MLP models to derive another model. 

f. Classification filter for malicious XSS queries: for an XSS injection to be successful, a web form 

containing the relevant XSS input must be successfully submitted to the webserver. The filter would be a 

backend program to scan web forms before submitting them to the server; to check for possible XSS 

inputs using the generated machine learning model. 

 

3.7.  The data used to bring out the results 

The extraction of payloads data were from online repositories, the building of web crawlers for 

payloads data extraction from logged XSS websites, and manual curation of the dataset The sources of data 

include: portswigger XSS cheatsheet, owasp cheatsheets for XSS attack and Github repository. The training 

and test dataset were gotten from these three websites. The raw payloads data was saved in txt format while 

the raw bening data was saved in csv format. The model's training was done using the Google colab platform, 

and the codes were prepared in Jupyter notebook.  

 

3.8.  Proposed system architecture 

The proposed system's structure is founded on a three-tier layered architecture. It comprises the 

presentation layer, logic layer, and the data layer, with all layers contributing to the system's total 

workability.  

a. Presentation tier: this where the web application of the system runs. It provides an interfacing link for 

the users to interact with the system. From this layer, the user can register themselves and access other 

functions of the system.  

b. Logic tier: this layer is regarded as the most relevant layer because all the registered functionalities in 

the logic tier are carried out here. It also comprises the application modules (the filtering program, XSS 

model API, cloud data create, read, update, and delete CRUD operations). 

c. Data tier: the data tier where data is stored and retrieved from. It includes the database (user data, cloud 

storage, and API event logs). 

 

 

4. RESULTS AND DISCUSSION 

4.1.  Model evaluation 

After the extraction and gathering of XSS payloads, the dataset for training and testing was done 

through downloads, the building of web crawlers, and curation. Ten thousand six hundred datasets for 

payloads data and five thousand datasets for benign data were extracted. The algorithms (DBN, LSTM, and 

MLP) were used individually to train XSS input, detection models. The best performing model was to be 

picked for use in the web application based on the testing dataset evaluation. The performance metrics used 

were: accuracy, ROC-AUC, precision, recall, and F1-score. The modeling; was based on two features: 

a. TFIDF: Term frequency and inverse document frequency, computed as a bag-of-word model with each 

tokenized query as words and their weighted frequencies as vectors. 

b. Word embedding: The word embedding model used was FastText by Facebook research. 

 

Model parameters used are discussed below 

a. Multi-layer perceptron: a two dense layer with 512 units of outputs and RELU as activation function was 

used. Also, the number of Epochs was three at 500 batch size each at training. A third dense layer with 

the neural network's final output was added with Sigmoid as an activation function. Two dropouts at 0.2 

were applied for the first two layers consecutively. The loss function used Binary Cross-Entropy, which 

was optimized using Adams optimization. 

b. LSTM: an embedding layer with 128 dimensions and the equal number of features as the dataset was used 

with the sequence model. 0.2 Dropout was also throughout the network, and the final output layer was 

activated using Sigmoid. The loss function used binary cross-entropy, which was optimized using Adams 

Optimization. The number of Epochs was three at 500 batch size for each training or backpropagation. 
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c. Deep belief network: restricted Boltzmann machine (RBM) was used as first layer activation to extract 

extra features. After these layers were done, the extra 3 dense layers and activation functions used in MLP 

were also applied here. The loss function used binary cross-entropy, which was optimized using Adams 

optimization. the number of Epochs was three at 500 batch size for each training. 

d. Ensemble: hard vote ensemble method was used for ensembling in this work. Calculated as the average of 

all three models for each prediction given. 

 

4.2.  Model validation 

Model validation are discussed as: 

 Training set: 70% Testing set: 30%  

 This split percentage was used for both TFIDF and Word Embedding.  

 Performance metrics used were: accuracy, ROC-AUC, precision, recall, and F1-Score. 

 The model's training was done using the Google Colab platform, and the codes were prepared in Jupyter 

notebook. The dataset's visualization report is shown in Figure 3, 10600 for attack data and 5000 for 

benign data. Table 1 presents the metric evaluations using TFIDF as features for the four deep learning 

models being utilized for this study, and Table 2 presents the metric evaluations using Word Embedding 

as features for the four deep learning models, respectively. 

 

 

 
 

Figure 3. Visualisation report for the dataset 

 

 

Table 1: Metric evaluations using TFIDF as features 
Model Accuracy Roc-Auc Precision Recall F1 Score 

MLP 98.99% {'attack':0.98, 

'benign':0.98} 

{'attack':0.99, 

'benign':0.98} 

{'attack':0.99, 

'benign':0.98}  

0.98 

LSTM 70.87% {'attack': 0.5, 

'benign': 0.5} 

{'attack':1.00, 

'benign':0.00}  

{'attack':0.71, 

'benign':0.00}  

0.41 

DBN 72.85% {'attack':0.53, 
'benign':0.53} 

{'attack':1.00, 
'benign':0.07}  

{'attack':0.72, 
'benign':1.00}  

0.48 

ENSEMBLE 72.85% {'attack':0.53, 

'benign':0.53} 

{'attack':1.00, 

'benign':0.07}  

{'attack':0.72, 

'benign':1.00}  

0.48 

 

 

Table 2. Metric evaluations using word embedding as features 
Model Accuracy Roc-Auc Precision Recall F1 Score 

MLP 99.47% {'attack':0.99, 

'benign':0.99} 

{'attack':1.00, 

'benign':0.98} 

{'attack':0.99, 

'benign':1.00}  

0.99 

LSTM 70.87% {'attack': 0.5, 

'benign': 0.5} 

{'attack':1.00, 

'benign':0.00}  

{'attack':0.71, 

'benign':0.00}  

0.41 

DBN 98.26% {'attack':0.97, 
'benign':0.97} 

{'attack':1.00, 
'benign':0.94}  

{'attack':0.98, 
'benign':1.00}  

0.97 

ENSEMBLE 98.20% {'attack':0.96, 

'benign':0.96} 

{'attack':1.00, 

'benign':0.94}  

{'attack':0.98, 

'benign':1.00}  

0.97 
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Figure 4 and Figure 5 shows the classification report on the jupyter notebook for the MLP model 

using TFIDF and word embeddings. 

 
 

Figure 4. Classification report for the MLP using TFIDF 

 

 

 
 

Figure 5. Classification report for the MLP using TFIDF 

 

 

4.3.  The experiments that works on the system 

The malicious scripts were injected on the web application through the input forms. The deep 

learning model was integrated at the back end of the web application to filter the inputs against malicious xss 

queries. An API that has a trained deep learning model was built. The API call was done from the frontend 

using Javascript. 
with open('mlp_model.pkl', 'rb') as file: 

 mlp_model = pickle.load(file) 

@app.route("/", methods=["POST","GET"]) 

def root(): 

 if request.method == "POST": 

  user_input = request.form['user_query'] 

  prediction = mlp_model.predict(user_input) 

 return jsonify({'prediction':prediction}) 

 else: 

 return jsonify({'prediction':false}) 

 

This shows the javascript code which filters the users input against the malicious queries and the 

web application is depicted in Figure 6. 
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Figure 6. The web application 

 

 

4.4.  Discussion  

LSTM performed the poorest using both TFIDF and Word Embedding. LSTM had 0 precision rates 

for benign queries and 1 for attack queries, because it was just labeling test set as attacks the test set is only 

for evaluating the model. Combined with its poor recall, it would lead to very high false positives in practical 

scenarios indicated by an F1-score less than 0.5. Wrong data belling for LSTM, hence it’s poor performance. 

Using F1-score as the metric, MLP performed best for both TFIDF and Word Embedding features. Word 

Embedding features performed slightly better TFIDF using the MLP model. Also, MLP made a very high 

accuracy of 99.4% on the test set and had a recall and precision for both attack and benign queries above 0.9, 

which should reduce false positives practical scenario as indicated by F1-score above 0.5 and very slightly 

close to 1 at 0.993. A brief description of what the performance Metrics implies. Performance metrics used 

were: Accuracy, ROC-AUC, Precision, Recall, and F1-Score. 

a. Accuracy: this measures how many correct predictions each model got in percentage. However, the 

easiest method of measuring performance is if the data is imbalanced or there is bias in classification, 

then an accuracy metric won't effectively be able to tell. 

b. For example; if there are 90 normal queries and 10 XSS attack queries, and the model classified all set as 

normal; it would achieve a 90% accuracy, but in this case, the model has not been able to effectively 

identify attack query due to possible bias or inability to handle data imbalance. Hence accuracy is not 

always the best validation metric. 

c. Precision: following the example above, the precision for normal query prediction would be a ratio of 0.9; 

however, for attack queries, it would be a precision ratio of 0. Precision, unlike accuracy, actually 

measures how well the model did for each of the classes and not an aggregation of all classes; which tend 

to lead to less false positives and identification bias in the model. 

d. Recall: still following the example, recall measures how many attack queries were predicted as attacks 

and vice versa for the normal queries. There were 90 normal queries, and all 90 were predicted correctly, 

so the recall ratio for the normal query would be 1. There were ten attack queries for attack query, and 

none were predicted correctly so that recall would be 0. This metric is also known as sensitivity. 

e. F1-score: F1-score combines precision and recall using harmonic mean to generate a metric for 

evaluation. Usually, a metric or ratio above 0.5 and closer to 1 means the model has better precision and 

recall, which means it tends to be more robust to data bias and false positives and vice versa. 

f. ROC-AUC: this is a combination of receiver operating characteristics and area under the curve, which is 

used to measure how well a model can distinguish between classes using random samples at different 

thresholds. A ratio of above 0.5 and close to 1 indicates better performance, and vice versa indicates poor 

performance. It measures sensitivity, specificity, and false-positive rates of the model, for its final 

evaluation. 

In addition to the explanation above regarding the metric generated by each model, MLP 

outperformed all other models in all metrics. It is precise, and recall values for predicting attacks are very 

promising and show it is not prone to false positives or bias from random samples as indicated by the high 

ROC-AUC score of 0.99. Previous records' predominant success and network flow LSTM indicates that it is 
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best suited for sequence problems like speech, thereby requiring larger data. At the same time, DBN adds an 

extra layer of feature extraction using Restricted Boltzmann machine which is to be fed to any other network 

layer, so it is not a system of layers like CNN, MLP. hence its performance is subjected to another network 

parameters and the extraction from restricted Boltzmann machine activation.  

MLP, on the other hand, performs well due to its simplistic network layer and less need for a larger 

dataset as opposed to other "more-advanced" deep learning models. So it trains and fits the data size much 

faster and effectively than "more-advanced" algorithms that require a larger set of activation functions and 

parameter activation. Also, the No free lunch theorem concept, the parameters used for MLP here, as 

discussed in the previous mail above, could have been more optimal for this data. The parameters used for 

the others could be less effective. For example, when using a softmax loss function during training, the deep 

learning models' accuracy metric drastically reduced below 30%; however, when changed to binary cross-

entropy, there was a significant boost. So the subjective parameters of the model also indicate poor or high 

performance. 

 

 

5. CONCLUSION 

In this work, a model was developed to detect XSS attacks using the MLP deep learning model, 

following a comparative review of its output compared to three other deep learning models, Ensemble, 

LSTM, and DBN. Research on the project led to the creation of Williams Cloud. This web-based proof-of-

concept framework incorporated an MLP deep learning model to detect and handle XSS attack scripts 

injected into a web application. The results of machine learning training on four algorithms showed that MLP 

performed best in detecting XSS attacks based on the evaluation metrics. The MLP model achieved 98.99 

percent using TFIDF as a feature and 99.47 percent using word embedding as a feature. This work 

contributes immensely to the knowledge that can also be further developed and adopted to counter and 

prevent other web-based attacks. Also, results obtained from users' evaluation will be made available for 

further research. 
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