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1. Introduction

Causality theory is a well established subject in Lorentzian manifolds and its importance is widely 
recognized. There are nice results where the levels of the causal ladder can be deduced starting from various 
assumptions. One of the most classical says that stably causal spacetimes are characterized by the existence 
of a time function [14]. Recent researches show that different variants of “time-like function” concepts are 
very useful to deal with causality theory in spacetimes. In [21], chronological and distinguishing spacetime 
are characterized in terms of volume and generalized time function. Authors in [7,8] established that if a 
spacetime admits a quasi-time function then it is causal. It is known that any Plane Front Wave spacetime (a 
generalization of Plane Wave spacetimes) admits a quasi-time function, [3]. Quasi-time functions and other 
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notions like semi-time function are also studied and linked to causality by many authors, see [15–19,23,25]
and references therein.

Our objective in this work is to contribute to a better understanding of the links between these types of 
functions and the different levels of the causal ladder of spacetimes. We will use [21] as our main reference. 
On the other hand, we take advantage of the fact that the techniques used allow us to study the influence 
of curvature for the same purpose.

In fact, we characterize future and past distinguishing spacetimes with the existence of a lower semi-
continuous and upper semi-continuous generalized time function respectively, Theorem 7, improving a result 
of Minguzzi and Sánchez, [21, Theorem 3.51]. We state in Theorem 11 a relation between the existence of 
a generalized time function and non total imprisoning spacetimes. We also prove that if there exists a gen-
eralized time function on a spacetime and a sequence of semi-time functions which converge pointwisely 
to it, then the spacetime is strongly causal, Theorem 14. We explore how the topology of the level sets of 
a semi-time function is related to causality. It is proved that the absence of strong causality implies the 
spacetime is total imprisoning or admits no semi-time functions all of whose fibers are compact, Theorem 18. 
Special attention is paid to 3-dimensional spacetimes in Theorems 19 and 20 where sufficient conditions to 
strong causality and non total imprisoning are described. A special result is Theorem 19 where we com-
bine the existence of a quasi-time function and a curvature condition in the hypothesis. This leads us to 
study the influence of curvature in causality in the last section. Of course there are many classical examples 
on the influence of curvature on global properties of the manifold, but it is not usual in causality theory, 
although there are important examples like classical singularity theorems, see also [9,10]. We impose the 
null convergence condition and the null completeness condition and explore their effect on non-total im-
prisoning spacetimes, Theorem 21, on future and past distinguishing spacetimes, on causally simple and 
globally hyperbolic spacetimes, Corollaries 22, 23 and 24, and on totally vicious spacetimes, Corollary 27
and Theorem 29.

2. Preliminaries

Recall that a spacetime (M, g) satisfies the chronology (causal) condition at a point p ∈ M provided 
there are not closed timelike (causal) curves through p. It satisfies the chronology (causal) condition in 
a subset A if it satisfies the chronology (causal) condition at each point p ∈ A. If A = M we say that 
(M, g) satisfies the chronology (causal) condition. A spacetime is non-total future imprisoning if no future 
inextensible causal curve is totally future imprisoned in a compact set. A spacetime is non-partial future 
imprisoning if no future inextensible causal curve is partially future imprisoned in a compact set. Actually, 
Beem proved [4, Theorem 4] that a spacetime is non-total future imprisoning if and only if it is non-total 
past imprisoning, thus in the non-total case one can simply speak of the non-total imprisoning property 
(condition N, in Beem’s terminology [4]). The strong causality condition holds at p ∈ M provided that given 
any neighborhood U of p there is a neighborhood V ⊂ U of p such that every causal curve segment with 
endpoints in V lies entirely in U . M is strongly causal if the strong causality condition holds at each p ∈ M .

A spacetime (M, g) is future-distinguishing at p ∈ M if I+(p) �= I+(q) for each q ∈ M , with q �= p. M is 
future-distinguishing if it is future-distinguishing at every point. This property of being future-distinguishing 
is called future-distinction. The concept of past-distinction is defined similarly. A spacetime is stably causal 
if it cannot be made to contain closed trips by arbitrarily small perturbations of the metric. The condition 
of stable causality is equivalent to the existence of a time function on (M, g), that is to say, a continuous 
function on M strictly increasing along future directed causal curves. There is one condition, related in 
some ways to the causality conditions above, which stands, nevertheless, outside the causal ladder.

Definition 1. A spacetime (M, g) is called reflecting if I+(q) ⊂ I+(p) ⇔ I−(p) ⊂ I−(q) for all p, q ∈ M .
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A spacetime (M, g) is called causally continuous if it is reflecting and distinguishing. Causal continuity is 
stronger than stable causality. A spacetime (M, g) is called causally simple if it is causal and J+(p), J−(p)
are closed sets for all p ∈ M . Finally, (M, g) is called globally hyperbolic if it is causal and J+(p) ∩ J−(p)
are compact sets for all p, q ∈ M .

3. Functions of time type and causality

Volume and time function are very useful in causality theory, see [6]. They are used to characterize some 
levels of the causal ladder. For instance, stably causal spacetimes as stated above are characterized by the 
existence of a time function. Also in [21], chronological and distinguishing spacetime are characterized in 
terms of volume and generalized time function. In this section we use functions of time type to characterize 
some causality levels. First, we recall some definitions.

Definition 2. Let (M, g) be a time oriented Lorentzian manifold.

1. A function f : M −→ R is a time function if it is continuous and strictly increasing along each future 
directed nonspacelike curve.

2. A function f : M −→ R is a generalized time function if ∀ p, q ∈ M , p < q ⇒ f(p) < f(q).
3. A function f : M −→ R is a semi-time function if it is continuous and strictly increasing on future 

directed timelike curves.
4. A smooth function f : M −→ R is said to be a quasi-time function provided

(a) The gradient of f is past directed nonspacelike, and
(b) Every null geodesic segment c such that f ◦ c is constant, is injective.

Remark 3. A quasi-time function is a semi-time function. Moreover, if a spacetime admits a quasi-time 
function then it is causal, see [7,8]. It is known that any Plane Front Wave spacetime (a generalization of 
Plane Wave spacetimes) admits a quasi-time function.

In [19] the author gave the following characterization of distinguishing spacetime.

Theorem 4. The spacetime (M, g) is future (resp. past) distinguishing if and only if for every x, z ∈
M, (x, z) ∈ J+ and x ∈ J+(z) imply x = z (resp. (x, z) ∈ J+ and z ∈ J−(x) imply x = z).

Moreover, in [21, Theorem 3.51] it is proved that a spacetime is past (resp. future) distinguishing if 
and only if the volume function t− (resp. t+) is a generalized time function. Note that t− is always lower 
semi-continuous and t+ always upper semi-continuous. We prove a similar result in the following theorem 
for generalized time function which are not necessarily volume function. We recall the notion of upper and 
lower semi-continuity.

Definition 5. A function f on a topological space X is upper (respectively lower) semi-continuous in x0 ∈ X, 
if for any ε > 0 there exists an open neighborhood U of x0 such that for any x ∈ U , f(x) ≤ f(x0) + ε

(respectively f(x) ≥ f(x0) − ε).

Remark 6. If a function f on a topological space X is lower (respectively upper) semi-continuous, then for 
any sequence {xn} converging to x ∈ X, we have f(x) ≤ limf(xn) (respectively limf(xn) ≤ f(x)).

Theorem 7. A spacetime (M, g) is past (respectively future) distinguishing if and only if it admits a lower 
(respectively upper) semi-continuous generalized time function.
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Proof. Suppose (M, g) admits an upper semi-continuous generalized time function f and fails to be future 
distinguishing. Then from Theorem 4, there exist two distinct points x, z ∈ M such that (x, z) ∈ J+ and 
x ∈ J+(z). Since (x, z) ∈ J+ we have f(x) < f(z). Also, since x ∈ J+(z), there exists a sequence {xn}
converging to x such that ∀n, xn ∈ J+(z). Then we have ∀n, f(z) < f(xn) which implies f(z) ≤ f(x) by 
the upper semi-continuity of f . Contradiction. So if (M, g) admits an upper semi-continuous generalized 
time function then it is future distinguishing. For the converse, if (M, g) is future distinguishing then from 
[21, Lemma 3.39 and Theorem 3.51] it admits an upper semi-continuous generalized time function.

The past distinguishing case is shown similarly. �
Corollary 8. A spacetime (M, g) is distinguishing if and only if it admits a lower semi-continuous generalized 
time function and an upper semi-continuous generalized time function.

We need to recall some basic definitions from dynamical system.

Definition 9. Let M be a manifold, X a complete vector field on M and Φ its flow. Let γ : R −→ M be an 
integral curve of X. The sets

ω(γ) = {p ∈ M : γ(tn) → p; tn → ∞}

and

α(γ) = {p ∈ M : γ(tn) → p; tn → −∞}

are called respectively the ω-limit set and the α-limit set of the orbit γ. A point p is called positively 
recurrent if p ∈ ω(γp) and it is called negatively recurrent if p ∈ α(γp), where γp is the unique integral curve 
of X through p. A subset A ⊂ M is invariant if Φt(A) ⊂ A, ∀t ∈ R. It is known that for any integral curve γ, 
ω(γ) and α(γ) are closed (probably empty) invariant subsets. A closed, non-empty, invariant subset A ⊂ M

is a minimal set if it contains no proper, closed, non-empty, invariant subset.

Our arguments will make intensively use of the following Lorentzian null splitting theorem due to Gal-
loway.

Theorem 10. [11, Theorem IV.1] Let M be a null geodesically complete spacetime which obeys the null 
convergence condition and contains a null line η. Then η is contained in a smooth achronal totally geodesic 
null hypersurface S.

It is obvious that if a spacetime admits a generalized time function then it is causal. However the relation 
between the existence of generalized time function and non totally imprisonment is not clear.

Theorem 11. Let (M, g) be a spacetime admitting a generalized time function f and a complete timelike 
conformal vector field. Then (M, g) is non totally imprisoning.

Proof. Suppose (M, g) is totally imprisoned. Since (M, g) is chronological, it contains a null line η contained 
in a compact minimal invariant set Ω such that η̄ = Ω and through each point of Ω, there passes one and 
only one null line contained in Ω, [16, Theorem 3.9]. Moreover, take any point p ∈ η, then there exists 
tn → ∞ such that η(0) = p and η(tn) −→ p. Let ζ be a conformal timelike complete vector field on M with 
flow φt. Then, ∀t ∈ R, φt ◦ η is a causal curve. Let γp denote the integral curve of ζ such that γp(0) = p. As 
f is a generalized time function,

f ◦ γp : R −→ R
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is strictly increasing and so it is easy to see that it is continuous outside a countable set. Let t0 ∈ R be such 
that f ◦ γp is continuous at t0. From [23, Proposition A.1], f is continuous at γp(t0) = q. The causal curve 
φt0 ◦ η satisfies (φt0 ◦ η)(0) = q and (φt0 ◦ η)(tn) −→ q. It follows that f((φt0 ◦ η)(tn)) is strictly increasing 
and converge to f(q). The contradiction follows from the fact that f((φt0 ◦ η)(0)) = f(q). �
Remark 12. The following example shows that the hypothesis on the existence of a generalized time function 
can not be weakened to the property of the spacetime to be causal. Let T2 be the two-torus given as the 
coordinate patch (x, y) ∈ [0, 1] × [0, 1] ⊂ R

2 with the identifications (0, y) ∼ (1, y) for all y ∈ [0, 1] and 
(x, 0) ∼ (x +

√
2, 1). The orbits of the vector field ∂y are dense in T2 as 

√
2 is irrational. We now consider 

the spacetime (R × T
2, g) with the Lorentzian metric

g = −dt2 + 2dtdy + dx2.

Then, (R ×T
2, g) is stationary with Killing vector field ∂t, and every t = constant slice {t} ×T

2 contains 
imprisoned but non-closed causal curves, i.e., the spacetime is causal but totally imprisoning.

We need the following characterization of strongly causal spacetimes, [19].

Theorem 13. The spacetime (M, g) is strongly causal if and only if for every x, z ∈ M, (x, z) ∈ J+ and 
(z, x) ∈ J+ imply x = z.

This allows us to give a link between strong causality and time-like functions.

Theorem 14. Let (M, g) be a spacetime. Suppose there exists a generalized time function f and a sequence 
{fk} of semi-time functions which converge pointwisely to f . Then (M, g) is strongly causal.

Proof. Suppose (M, g) is not strongly causal. Then by Theorem 13, there exists two distinct points x, z ∈ M

such that (x, z) ∈ J+ and (z, x) ∈ J+. Since (x, z) ∈ J+ we have f(x) < f(z). Also, since (z, x) ∈ J+, there 
exists two sequences {xn} and {zn} converging respectively to x and z such that ∀n, xn ∈ J+(zn). Then we 
have ∀k and ∀n, fk(zn) ≤ fk(xn) which implies by the continuity of each fk that fk(z) ≤ fk(x) ∀k. Take 
the limit as k goes to infinity and get f(z) ≤ f(x). Contradiction. �
Remark 15.

1. As shown in the proof, the functions fk can be taken just non decreasing on future directed causal 
curve. Moreover, if the functions fk are not continuous but lower semi-continuous (respectively upper 
semi-continuous) and non decreasing on future directed causal curve then by similar arguments and 
using Theorem 4, it can be shown that (M, g) is past distinguishing (respectively future distinguishing).

2. Suppose (M, g) is a stably causal spacetime. Then it admits a (continuous) time function f . If we take 
fk = f ∀k in Theorem 14, we rediscover the well known fact that any stably causal spacetime is strongly 
causal.

We explore now how the topology of the fibers of a semi-time function is related to causality. The following 
theorem is needed.

Theorem 16. [20] Let c : [a, b] → M be a maximizing causal curve on the spacetime (M, g), then there are 
the following possibilities,

1. c is timelike and (M, g) is strongly causal at c(t) for every t ∈ (a, b).
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2. c is lightlike and one of the following possibilities holds
(a) (M, g) is strongly causal at c(t) for every t ∈ (a, b).
(b) Strong causality is violated at every point of c, and (c(t2), c(t1)) ∈ J+ for all t1, t2 ∈ [a, b] with 

t1 < t2.
(c) c intersects the closure of the chronology violating set at some point x = c(t), t ∈ (a, b). Moreover, 

all the points in c((a, b)) at which strong causality is violated belong to the closure of the chronology 
violating set. In particular, (M, g) is not chronological.

Remark 17. This theorem is an extension of a result of Newman, [22, Proposition 3.5], which states that 
given a maximizing timelike segment c : [a, b] → M , the spacetime (M, g) is strongly causal at (a, b). The 
case (ii) in short states that outside the closure of the chronology violating set, the maximizing lightlike 
segments propagate the property of strong causality.

Theorem 18. A non total imprisoning spacetime admitting a semi-time function with compact level sets is 
strongly causal.

Proof. Assume strong causality fails at some x ∈ M . Then there exists a null line γ : I → M passing 
through x, [18]. Without loss of generality, we can suppose γ future directed. Call f the semi-time function. 
We show that f is constant on γ. It holds γ(t1) < γ(t2) for all t1, t2 ∈ I with t1 < t2. So we have f(γ(t1)) ≤
f(γ(t2)). Moreover, it holds (γ(t2), γ(t1)) ∈ J+ from the item 2.b of the above theorem. Then, there exists 
two sequences {xn} and {zn} converging respectively to γ(t1) and γ(t2) such that ∀n, xn ∈ J+(zn) and 
consequently f(zn) ≤ f(xn) for all n. By the continuity of f it holds f(γ(t2)) ≤ f(γ(t1)). This proves that 
for all t1, t2 ∈ I, f(γ(t2)) = f(γ(t1)) and then f ◦ γ is constant, that is, γ is contained in some level set 
of f . Since f has compact level sets, γ is a totally imprisoned causal line, which contradicts the non total 
imprisonment condition. �

Now we focus on 3-dimensional spacetimes, where the existence of a semi-time function can be slightly 
weakened.

Theorem 19. Let (M, g) be a null complete 3-dimensional spacetime manifold satisfying the null convergence 
condition. Suppose it admits a quasi-time function f with compact connected level sets non diffeomorphic 
to a torus. Then (M, g) is strongly causal.

Proof. We prove first that (M, g) is non total imprisoning. Suppose (M, g) is totally imprisoning. The 
existence of a quasi-time function implies that (M, g) is causal (Remark 3) in particular chronological. 
Hence from [16, Theorem 3.9], it contains a null line η contained in a compact minimal invariant set Ω such 
that η̄ = Ω and through each point of Ω, there passes one and only one null line contained in Ω. Using 
the null completeness and the null convergence condition, η is contained in a smooth (topologically) closed 
achronal totally geodesic null surface L, Theorem 10, which can be taken connected. Take a timelike vector 
field as a rigging for L and rescale its associated rigged vector field ξ such that ξ is complete, see [12]. Then, 
as any null line through a point p ∈ Ω shares the same trace as the integral curve of ξ through p, it follows 
that Ω is a compact minimal invariant set of the flow of ξ. It is known that a compact minimal set of a 
C2 differentiable dynamical system on a 2-surface S is either a fixed point, a periodic orbit or all of S, in 
which case S is a torus, see [24], (although in the original paper [24] S must be compact, it is not necessary, 
see [13, Ch. VII, 12.1.]). Since ξ is a lightlike vector field and (M, g) is causal, the compact minimal set 
Ω is neither a fixed point nor a periodic orbit. So Ω = L and then L is a compact null surface which is a 
torus. We have η̄ = Ω which implies that strong causality fails on η. Following the same arguments as in 
the proof of Theorem 18, η is contained in a level set say F of f which is connected. Since η̄ = Ω = L and 
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F is closed then L is contained in F . Note that F is a smooth surface. It follows that L is an open subset 
of F . But being compact L is also closed in F . From the connectedness of F we get that F = L which 
gives the contradiction as the level sets of f are not torus. This proves that (M, g) is non total imprisoning. 
Finally since f is a quasi-time function and hence a semi-time function with compact fibers, Theorem 18
states that (M, g) is strongly causal and the proof is complete. �

If a quasi-time function f exists on a spacetime (M, g) then it is causal. A natural question is under 
which condition (M, g) can be non total imprisoning. The following result gives an answer.

Theorem 20. Let (M, g) be a null complete 3-dimensional spacetime manifold satisfying the null convergence 
condition. Suppose it admits a quasi-time function f with lightlike gradient and non compact connected fibers. 
Then (M, g) is non total imprisoning.

Proof. We argue as in Theorem 19. Suppose (M, g) is totally imprisoned. The existence of a quasi-time 
function implies that (M, g) is causal (Remark 3) in particular chronological. Hence from [16, Theorem 3.9], 
it contains a null line η contained in a compact minimal invariant set Ω such that η̄ = Ω and through each 
point of Ω, there passes one and only one null line contained in Ω. Using the null completeness and the 
null convergence condition, η is contained in a smooth (topologically) closed achronal totally geodesic null 
surface L, Theorem 10, which can be taken connected. As strong causality fails on η, following the same 
arguments as in the proof of Theorem 18, η is contained in a level set say F of f . Note that F is a smooth 
lightlike null surface since the gradient ∇f is lightlike. Moreover, ∇f is tangent to F . Take a timelike vector 
field as a rigging for F and rescale its associated rigged vector field ξ such that ξ is complete, [12], then Ω
is a compact minimal invariant set of the flow of ξ. Since ξ is a lightlike vector field and (M, g) is causal, 
the compact minimal set Ω is neither a fixed point nor a periodic orbit. So Ω = L and then L is a compact 
null surface which is a torus. Since η̄ = Ω = L and F is closed then L is contained in F . It follows that L is 
an open subset of F . But being L compact, it is also closed in F . From the connectedness of F we get that 
F = L which gives the contradiction as the level sets of f are non compact. This proves that (M, g) is non 
total imprisoning. �
4. Curvature conditions

Theorem 19 above shows a link between curvature and causality which as we said, is not usual in the 
literature. This justifies to explore further curvature and causality interrelations, and this is the aim of this 
section.

Null convergence condition and null completeness have been used intensively in the formulation of numer-
ous results in general relativity, in particular singularity theorems. We prove that if both of these conditions 
hold in a spacetime then the condition for the spacetime to be causal in the definition of causally simple and 
globally hyperbolic spacetime can be weakened to chronological. Moreover we prove that if both condition 
hold and J+(p) (resp. J−(p)) is closed for any p ∈ M , then the spacetime is either future distinguishing 
(resp. past distinguishing) or it is non chronological and in this case all the connected components of the 
boundary of the chronological violating set are non compact. In particular, if null convergence condition 
and null completeness hold on a compact spacetime which satisfies J+(p) closed or J−(p) closed for any 
p ∈ M , then it is totally vicious. Others related results are also proved. We begin with a result concerning 
non total imprisonment.

Theorem 21. Let (Mn, g), with n ≥ 3 be a chronological, null geodesically complete spacetime which obeys the 
null convergence condition. Suppose for all p ∈ M , J+(p) is closed or J−(p) is closed. Then the spacetime 
is non total imprisoning.
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Proof. Suppose (M, g) is totally imprisoning. Since (M, g) is chronological it follows from [16, Theorem 3.9]
that it contains a null line η contained in a compact minimal invariant set Ω such that η̄ = Ω. Moreover, all 
the points belonging to Ω share the same chronological past and future. Using the null completeness and the 
null convergence condition, η is contained in a smooth (topologically) closed, achronal and totally geodesic 
null hypersurface S, Theorem 10. More precisely, S is the connected component of ∂I+(η) (or of ∂I−(η)) 
containing η. Since all points belonging to Ω share the same chronological past and future, given any p ∈ η

we have ∂I+(η) = ∂I+(p) = ∂J+(p) and ∂I−(η) = ∂I−(p) = ∂J−(p). By hypothesis, J+(p) is closed or 
J−(p) is closed. Assume the former case. Using the fact that J+(p) is closed, it holds ∂J+(p) = E+(p). 
Recall that any point of E+(p) lies on a null geodesic segment from p and E+(p) is always connected. 
So we get that S = E+(p). The contradiction follows from the fact that E+(p) cannot be a smooth null 
hypersurface because it contains the initial portion of the null cone at p. Now, if J−(p) is closed then by a 
similar argument we have that S = E−(p) and the contradiction follows as above. It follows that (M, g) is 
non total imprisoning. �
Corollary 22. Let (Mn, g), with n ≥ 3 be a chronological, null geodesically complete spacetime which obeys 
the null convergence condition. If J+(p) (resp. J−(p)) is closed for all p ∈ M , then the spacetime is future 
distinguishing (resp. past distinguishing).

Proof. We give the proof in the case that J+(p) is closed for all p ∈ M . The past case is similar. From 
Theorem 21, (M, g) is non total imprisoning and in particular it is causal.

Suppose (M, g) failed to be future distinguishing. Then there exist distinct points p, q ∈ M such that 
I+(p) = I+(q) and from the closedness of J+ we have p ∈ I+(p) = I+(q) = J+(q) = J+(q) and similarly 
q ∈ J+(p). This means that there is a closed causal curve through p. Contradiction. �

We recall that a spacetime (M, g) is causally simple if it is causal and J+(p), J−(p) are closed sets for all 
p ∈ M and globally hyperbolic if it is causal and J+(p) ∩ J−(p) are compact sets for all p, q ∈ M , [5]. It is 
known that in the above two definitions, the condition for the spacetime to be causal can not be in general 
relaxed to the chronological condition, see [21, Remark 3.72]. The next two Corollaries show that under the 
association of the null convergence condition and null completeness the causal condition can be relaxed to 
the chronological one.

Corollary 23. Let (Mn, g), with n ≥ 3 be a chronological, null geodesically complete spacetime which obeys 
the null convergence condition. If ∀p ∈ M , J+(p) and J−(p) are closed then the spacetime is causally simple.

Proof. By hypothesis J+(p) and J−(p) are closed sets for all p ∈ M . From Theorem 21, (M, g) is causal. 
So (M, g) is causally simple. �

We have also the following.

Corollary 24. Let (Mn, g), with n ≥ 3 be a chronological, null geodesically complete spacetime which obeys 
the null convergence condition. If J+(p) ∩ J−(q) is compact for all p, q ∈ M . Then the spacetime is globally 
hyperbolic.

Proof. Since J+(p) ∩J−(q) is compact for all p, q ∈ M it follows that J+(p) and J−(p) are closed sets for all 
p ∈ M , see [21, Proposition 3.71]. From Theorem 21, (M, g) is causal and then it is globally hyperbolic. �

Now, we consider the case when the spacetime is non chronological. The chronology violating set is 
C = {x : x � x}, and is made by all the events through which there passes a closed timelike curve. The 
spacetime violates chronology if C �= ∅, that is, if there is a closed timelike curve. Suppose C �= ∅, then 
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C splits into equivalence classes according to Carter’s equivalence relation x ∼ y ⇔ x � y and y � x. 
Two points belong to the same class if there is a closed timelike curve passing through them. The class of 
x ∈ C is denoted [x]. Note that [x] = I+(x) ∩ I−(x), thus [x] is open. So the chronological violating set 
can be written C =

⋃
α Cα, with Cα its (open) connected components. The boundary of the component Cα

can be written ∂Ck =
⋃

α Bαk, with Bαk its (closed) connected components. Some authors have studied the 
compactness of the components of the chronological violating set’s boundary with respect to some energy 
condition ([15]) or absence of null line ([18]). More precisely, we have the following Kriele’s theorem.

Theorem 25. Suppose that (M, g) satisfies the null energy condition and the null genericity condition. If 
a connected component of the boundary of the chronology violating set C is compact, then (M, g) is null 
geodesically incomplete.

The following theorem shows that the conclusion in Kriele’s theorem holds if the null genericity condition 
is replaced by the condition: for all p ∈ M , J+(p) is closed or J−(p) is closed.

Theorem 26. Let (Mn, g), with n ≥ 3 be a spacetime which obeys the null convergence condition. Suppose 
J+(p) or J−(p) is closed for all p ∈ M . If a connected component of the boundary of the chronological 
violating set is non empty and compact, then (M, g) is null geodesically incomplete.

Proof. Suppose (M, g) is null geodesically complete. Since a connected component (say B) of the boundary 
of the chronological violating set is compact, there exists a null line η contained in the compact set B. Note 
that B do not meet the chronological violating set since the latter is open. So from [16, Theorem 3.9], (M, g)
contains a compact minimal invariant set Ω such that η̄ = Ω. Moreover, all the points belonging to Ω share 
the same chronological past and future. Using the null completeness and the null convergence condition, η
is contained in a smooth (topologically) closed achronal totally geodesic null hypersurface S, Theorem 10. 
More precisely, S is the connected component of ∂I+(η) (or of ∂I−(η)) containing η. Using the fact that for 
all p ∈ M , J+(p) is closed or J−(p) is closed, we get the contradiction as in the proof of Theorem 21. �
Corollary 27. Let (Mn, g), with n ≥ 3 be a compact spacetime which obeys the null convergence condition 
and is null complete. Suppose for all p ∈ M , J+(p) is closed or J−(p) is closed, then (M, g) is totally 
vicious. In particular, any compact flat spacetime which satisfies J+(p) closed for all p ∈ M (respectively 
J−(p) closed for all p ∈ M) is totally vicious.

Proof. Suppose (M, g) is non totally vicious. Then since it is a compact spacetime, each connected compo-
nent of the boundary of the chronological violating set would be non empty and compact. This contradicts 
the null completeness assumption, see Theorem 26. For the last assertion, note that any compact flat 
spacetime is complete and satisfies the null convergence condition. �

We finish with a theorem for which we need a technical proposition which uses the rigging technique, see 
[12] for details and [1,2] for further developments.

Proposition 28. Let (M2n+1, g) be a time orientable Lorentzian manifold admitting a gradient spacelike 
vector field with only two critical points. Then (M, g) contains no compact null hypersurface.

Proof. Suppose a compact null hypersurface L in (M, g). We can take any timelike vector field ζ on M as 
a rigging for L. Let ∇f be a spacelike gradient vector field on M with two critical points. Let h denote the 
restriction of f on L. Then, along M it holds ∇f|L = X + aξ + bN , where a and b are smooth functions 
on M and X ∈ S(ζ), the screen distribution induced by ζ. Using the associated rigged metric g̃, we get 
∇̃h = X + bξ. Let p be a critical point of h on M . Then ∇̃h|p = 0 and ∇f|p = a(p)ξp. Since ∇f is spacelike 
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we get p is a critical point of ∇f . As f has only two critical points, it follows that h has just two critical 
points since L is compact. Let us recall that a compact manifold admitting a function with only two critical 
points is homeomorphic to the euclidean sphere, so being L a hypersurface, it is homeomorphic to S2n in 
contradiction with the fact that L has zero Euler characteristic since the rigged vector field is a global non 
vanishing vector field. �
Theorem 29. Let (Mn, g), with n ≥ 3 be a compact spacetime which obeys the null convergence condition 
and is null complete. Suppose there exists a gradient spacelike vector field with only two critical points. Then 
n is odd, M is homeomorphic to the euclidean sphere Sn and (M, g) is totally vicious.

Proof. We will prove that (M, g) contains no null line and then we get the conclusion that (M, g) is totally 
vicious, see [18, Theorem 12]. Suppose (M, g) contains a null line. Then using the null completeness and 
the null convergence condition, this null line is contained in a smooth (topologically) closed achronal totally 
geodesic null hypersurface L, Theorem 10. As M is compact and L is (topologically) closed, it follows that 
L is a compact null hypersurface. Moreover since (M, g) carries a function with only two critical points, it 
is homeomorphic to Sn. It is well known that compact manifold with non zero Euler characteristic can not 
carry a Lorentzian metric. So M is homeomorphic to an odd dimensional sphere. But from Proposition 28, 
there can not exist compact null hypersurface, which gives the contradiction. �
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