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Abstract. In this work, we proposed to study the dynamics of a bi-recessed micro-

beam coupled magnetically to two Josephson junctions. After building a model of

MEMS (Micro Electro Mechanical Systems), the equations of their dynamics are

determined. The fixed points of system are analytically checked and their stability

is analyzed by using the Routh-Hurwitz criterion. For this purpose, a numerical study

utilizing the bifurcation diagram, Lyapunov exponents, phase portraits and times

hystories is made to analyze the different dyanamic modes of micro-beam coupled

to two Josephson junctions. The effect of Josephson junctions on the behavior of the

micro-beam is seriously analyzed. It is obtained for each part of the MEMS the various

dynamics influenced by certain parameters of the system.

Keywords: Micro-beam, Josephson junctions, Bifurcation, Chaos, Limit cycles

1. Introduction

The miniaturization of technological objects has been one of the major goals of electrical

engineering in recent decades. The development of tiny electrodynamic components has

become an asset for achieving this goal of miniaturization. Micro Electro Mechanical

Systems (MEMS) are therefore very popular in the industrial electronics market because

of their very interesting size and electrodynamic characteristics [1, 2]. The one we

will study in this paper consists of two Josephson junctions as an electrical part and

a bi-recessed micro-beam as its mechanical part. Roukes, Cross, Ekinci, Matheny,
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 2

Kozinsky, Bullard, Vilanueva, Etaki, Herrera-May... with their collaborators have in

several works ( [3–9]) analyzed from various angles the characteristics, the properties,

the dynamic, utilities and rich applications offered by these miniaturized devices. Their

different and very interesting results obtained, give a great motivation for the study

that we propose here by coupling a micro-beam and two Josephson junctions. On

the other hand, there are several theories of beams. Here, that used is that of Euler-

Bernoulli which gives the general equation of flexural vibration of the beams. This

equation as used in [10, 11] will be written for a micro-beam subjected to the action

of a magnetic force created by a uniform magnetic field ~B in the vicinity of this

one. The Josephson effect since its prediction in 1962 by Brian Josephson has been

the subject of an exhaustive list of scientific research. The dynamic behaviors and

interesting features of the Josephson junction have been studied as in [12–17]. Being

the main constituent element of the SQUID (finer magnetic field detector and RSFQ

where Josephson junctions act as transistor and would allow to obtain frequencies in

hundreds of GHz), the Josephson junction by its physical properties, is a device of

choice for several fields of application and is therefore the subject of several studies and

scientific research. For example, recently, in January 2018, Nuznetsov et al. studied

in [18] the dynamics of three and four non-identical Josephson junctions connected

in series and coupled with an RLC dipole. Our motivations for this study are also

justified by the recently research on the electromechanical systems. For example, the

electromechanical coupling to obtain a MEMS was done by Domguia et al. in [10] where

electrodynamic equations, stability analysis and dynamic behaviors were studied for a

MEMS consisting of a micro-beam coupled to an Hindmarsh-Rose electric oscillator.

Yamapi, in [19] study the harmonic dynamics and transition to chaos in a nonlinear

electromechanical system with parametric coupling. They shown that the dynamics of

their electromechanical system has described by an electrical Duffing oscillator coupled

gyroscopically and parametrically to a linear mechanical oscillator. Recently, Yamapi

and Filatrella in [20] studied the noise effect on birhythmique Josephson junction coupled

to a resonator. They have found that the stability analysis of Josephson junction

coupled to a resonator shows a striking change in the birhythmic region. The attractor

characterized by a frequency locked to the resonator is most stable for low bias current,

when the power dissipated in the cavity is small. Ekinci and Roukes in [4] have studied

the internal deformation of a nano-beam bi-embedded around its frequency of resonance

and under the effect of an electromagnetic force generated by a continuous current

along the length of the beam bathed in a uniform magnetic field ~B. Other interesting

parameters as the quality factor of the resonance of this miniaturized device have also

been studied. For this work, we subjected the micro-beam to the same effect but with

an alternating current. Inspired by all this literature we propose in this work to couple

two Josephson junctions to a micro-beam immersed in an uniform magnetic field ~B.

At first, we will establish the electrodynamic equations of the MEMS; secondly, we

will study the fixed points and their stabilities using the Routh-Hurwitz criterion [21]

and thirdly we will evaluate the influence of each control parameter on the oscillatory
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 3

dynamics of the MEMS. Considering that depending on the field of study and their

applications, it is sometimes useful or undesirable many researchers are interested in

the prediction of chaos and/or its control [22–27] . For this issue, we will determine

the chaotic domains of our MEMS for each control parameter and will also analyze the

influence of Josephson junctions on the vibratory dynamics of the micro-beam. The

paper is structured as follows: section 2 gives the model and dynamics equations of

the MEMS while section 3 deals with the determination of equilibrium points and their

stability analysis. In section 4, the bifurcations sequences and route to chaos using the

numerical simulations are analyzed and the effect of each parameter of the system is

found. We provided a conclusion in the last section.

2. Model and dynamics equations of the MEMS

2.1. Presentation of the MEMS

In this work, we consider a model of MEMS (Micro Electro Mechanical Systems) as

show in figure 1 which contains a micro-beam coupled magnetically to two Josephson

junctions. The presence of Josephson junctions due to its properties of good voltage-

frequency converter. The study of the Josephson junction and its interesting features are

no longer to be dismantled. Indeed, researchers such as Salem, Sastry, Abidi,... have in

many of their works demonstrated the very interesting properties and characteristics of

this junction ( [12–14,28]). The mechanical part is a silicon flexible micro-beam covered

by a metal through which the current travels and placed in a zone where magnetic field
~B is present.

 

 

 

 

 

 

 

                                                                                                                              

 

 

 

 

 

 

  

 

 

Figure 1. Electrical circuit of the MEMS where the Josephson junction is represented

by its RCSJ model.
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 4

In this paper, the symbols used are listed and defined in the following Table

symbols Corresponding definitions

R1: Resistance of the first Josephson junction

R2: Resistance of the second Josephson junction
~B: The magnetic field vector

φ: Field flow across the lateral surface S of the beam

C1: Self-capacitance of the first Josephson junction

C2: Self-capacitance of the second Josephson junction

IC1 : Critical current of the first Josephson junction

IC2 : Critical current of the second Josephson junction

IG: Amplitude of the excitation current.

u(z, t): Function characterizing transverse displacement

E: Young module of the micro-beam material

Iy: The moment of inertia of the micro-beam

ρ: Volume density of the micro-beam material

f(t): The actuating force of the micro-beam

λ: Damping coefficient of the micro-beam

A: Cross-sectionnal area of the micro-beam

ϕ1: Phase difference of first Josephson jonction

ϕ2: Phase difference of second Josephson jonction

ep: Electromotive force induced by the micro-beam

rp: Electrical resistance of the micro-beam

L: Length of the micro-beam

µ: Resistivity of the micro-beam material

~: Reduced Planck constant

e: Elementary electric charge

η1: Normalisation coefficient
Table: List of symbols and corresponding definitions

2.2. Mathematical modeling of the system

We consider the schematic diagram of MEMS (Figure1) under consideration in this work

and we apply the node law. The exited current is written as

IG coswt = i1 + is (1)

The equations of the electrical part where the Josephson junction is represented by its

RCSJ model [14,17] are written:
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 5

i1 =
~C1

2e

d2ϕ1

dt2
+

~
2 eR1

dϕ1

dt
+ (2)

IC1 sinϕ1 = IG cos(wt)− is,

and

is = i2 =
~C2

2 e

d2ϕ2

dt2
+

~
2 eR2

dϕ2

dt
+ IC2 sinϕ2. (3)

Considering the mesh (R1R2R1) we can write

R1 · iR1 − (rp · is − ep)−R2 · iR2 = 0,

which can be rewritten as follow

~R1

2 eR1

dϕ1

dt
− rpis + ep −

~R2

2 eR2

dϕ2

dt
= 0.

Thus,

is =
~

2 e rp
(ϕ̇1 − ϕ̇2) +

ep
rp
,

with ( ep
rp

) current induced by current flow through the magnetic field. IC1 sinϕ1 and

IC2 sinϕ2 designate the current through the first intrinsic junction and the current

through the second intrinsic junction. Replacing is by its expression in equations (2)

and (3) we get:

ϕ̈1 +
R1 + rp
R1rpC1

ϕ̇1 +
2eIC1

~C1

sinϕ1 −
1

rpC1

ϕ̇2 +
2e

~C1rp
ep =

2eIG
~C1

cos(ωt), (4)

ϕ̈2 +
R2 + rp
R2rpC2

ϕ̇2 +
2eIC2

~C2

sinϕ1 −
1

rpC2

ϕ̇1 −
2e

~C2rp
ep = 0. (5)

According to the differential equation of the dynamics of micro beams [10,11], the

mechanical part equation is written:

E.Iy
∂4u(z, t)

∂z4
+ ρA

∂2u(z, t)

∂t2
+ λ

∂u(z, t)

∂t
+NLT = f(t), (6)

In this study it is assumed that NLT = 0.

The actuating force f(t) of the beam is a Lorentz force (magnetic) and is written:

f(t) = IC .B .l sin( ~B,~l) = B is = B

[
~

2 e rp
(ϕ̇1 − ϕ̇2) +

ep
rp

]
. (7)

Inserting equation(7) into equation (6) we obtain:
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 6

E.Iy
∂4u(z, t)

∂z4
+ ρA

∂2u(z, t)

∂t2
+ λ

∂u(z, t)

∂t
= B

[
~

2erp
(ϕ̇1 − ϕ̇2) +

ep
rp

]
. (8)

Let φ the field flow across the lateral surface S of the beam. Thus

φ = BS,

with S = 2
∫ L
o
u(z, t)dz, and we have

ep = −2B

∫ L

o

∂u(z, t)

∂t
dz and

(ep/rp) =
−2BA

µL

∫ L

o

∂u(z, t)

∂t
dz.

The shape of the modes must satisfy the differential geometries and boundary

conditions [29]. The deflection u(z, t) of the beam can then be written as follows:

u(z, t) =
∞∑
n=1

Zn(z)Tn(t)

where n indicates the mode of vibration; Tn(t) represents the generalized coordinate

of the amplitudes and Zn(z) the set eigenfunctions of the equation:

∂4u(z, t)

∂z4
+

ρA

E.Iy

∂2u(z, t)

∂t2
= 0.

In our case we have u(0, t) = u(L, t) = 0 (boundary conditions) and the set

eigenfunctions Zn(z) are written:

Zn(z) = an(cos ξn z − cosh ξn z) + bn(sin ξn z − sinh ξn z),

with ξn the solution of the transcendental equation:

cos ξn L cosh ξn L− 1 = 0.

As we focus on the study of the ground state we will take it for the rest n = 1.

By doing the standardization below :∫ L

0

Z1(z)Zn(z)dz = L3δ1,n =

{
L3 if n = 1

0 if n 6= 1
(9)

and let’s put η1 = 1
L2

∫ L
0
Z1(z)dz and bringing all the above transformations to the

equations (4), (5) and (8) we get:

ϕ̈1 +
R1 + rp
R1rpC1

ϕ̇1 +
2eIC1

~C1

sinϕ1 −
1

rpC1

ϕ̇2 − (10)

4eBALη1
~C1µ

Ṫ =
2eIG
~C1

cos(ωt),
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 7

ϕ̈2 +
R2 + rp
R2rpC2

ϕ̇2 +
2eIC2

~C2

sinϕ1 −
1

rpC2

ϕ̇1 +
4eBALη1
~C2µ

Ṫ = 0, (11)

and

ρA T̈ (t)Z1(z) + λ Ṫ (t)Z1(z) + E.Iy ξ
4T (t)Z1(z) +

B ~
2 e rp

(ϕ̇2 − ϕ̇1)+

2B2A

µL
Ṫ (t)

∫ L

o

Z1(z)dz = 0

Better we have:

ρA T̈ (t)Z1(z) + λ Ṫ (t)Z1(z) + E.Iy ξ
4T (t)Z1(z) +

B ~
2 e rp

(ϕ̇2 − ϕ̇1)+

2B2Aη1 L

µ
Ṫ (t) = 0 (12)

By integrating the equation 12 with
∫ L
o
Z1(z)dz and considering the normalization

above we have:

T̈ (t) +

(
λ

ρA
+

2B2 η21
µρ

)
Ṫ (t) +

E.Iy ξ
4

ρA
T (t)+ (13)

B ~η1
2 e ρA rp L

(ϕ̇2 − ϕ̇1) = 0

Let’s :

τ = ω1 t; β1 =
ϕ1

ϕ01

; β2 =
ϕ2

ϕ02

and α =
T

T0

.

The dimensionless equations are then written:

α̈ = −ε1α̇− ε2α− ε3
[
ϕ02 β̇2 − ϕ01 β̇1

]
, (14)

β̈1 = −1β̇1 − 2 sin(ϕ01β1) + 3β̇2 + 4 α̇ + iG0 cos(ω0τ), (15)

β̈2 = −σ1 β̇2 − σ2 sin(ϕ02β2) + σ3β̇1 − σ4 α̇, (16)

with:
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 8

1 =
R1 + rp

R1 rpC1 ω1

; 2 =
2 e IC1

~C1 ω2
1 ϕ01

; 3 =
ϕ02

rpC1 ω1 ϕ01

; 4 =
4 eB ALη1 T0
~C1 µω1 ϕ01

iG0 =
2 e IG

~C1 ω2
1 ϕ01

; ω0 =
ω

ω1

; σ1 =
R2 + rp

R2 rpC2 ω1

; σ2 =
2 e IC2

~C2 ω2
1 ϕ02

;

σ3 =
ϕ01

rpC2 ω1 ϕ02

; σ4 =
4 eB ALη1 T0
~C2 µω1 ϕ02

; ε1 =

(
λ

ρAω1

+
2B2η21
ρω1 µ

)
;

ε2 =
E Iy ξ

4

ρAω2
1

; ε3 =
B ~ η1

2 e ρA rp Lω1 T0

The micro electromechanical system shown in figure 1 is described by equations (14),

(15) and (16). In this work, σ3, ε3, and 1 are the damping coefficients of the phase

difference φ1 of the first Josephson junction; σ1, ε1, and 3 are the damping coefficients of

the phase difference φ2 of the second Josephson junction; σ4, ε1, and 4 are the damping

coefficients of the micro-beam; ε2 the pulsation of the micro-beam; 2 the coefficient

of intrinsic current through the first Josephson junction; σ2 the coefficient of intrinsic

current through second Josephson junction; ω0 the frequency of excitation current; iG0

the amplitude of the excitation current; ϕ01 Initial phase of first Josephson junctionφ1;

ϕ02 Initial phase of second Josephson junction

3. Fixed points and Stability

In this section, we search the equilibrium points of the autonomous system and we

analyze their stability. For this end, the autonomus system can been written as:

α̇ = x

ẋ = −ε1x− ε2α− ε3(ϕ02 z − ϕ01 y)

β̇1 = y

ẏ = −1y − 2 sin(ϕ01β1) + 3z + 4 x

β̇2 = z

ż = −σ1 z − σ2 sin(ϕ02β2) + σ3y − σ4 x,
(17)

Thus the fixed points of the system are defined by:

E∗(α∗, x∗, β∗1 , y
∗, β∗2 , z

∗) =

(
0, 0,

k1π

ϕ01

, 0,
k2π

ϕ02

, 0

)
ki,∈ Z.

At the fixed point E∗, the Jacobian is:
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 9

J(E∗) =

0 1 0 0 0 0

−ε2 −ε1 0 ε3 ϕ01 0 −ε3 ϕ02

0 0 0 1 0 0

0 4 −2 ϕ01 cos(k1π) −1 0 3
0 0 0 0 0 1

0 −σ4 0 σ3 −σ2 ϕ02 cos(k2π) −σ1


The characteristic equation at E∗ is:

κ6 + µ6κ
5 + µ5κ

4 + µ4 κ
3 + µ3 κ

2 + µ2 κ+ µ1 = 0 (18)

with:

µ1 = ε22ϕ01σ2ϕ02 cos(k1π) cos(k2π)

µ2 = σ1ε22ϕ01 cos(k1π) + σ2ε21ϕ02 cos(k2π) + ε12ϕ01σ2ϕ02 cos(k1π) cos(k2π)

µ3 = ε21σ1 + σ1ε12ϕ01 cos(k1π) + σ2ε11ϕ02 cos(k2π) + 2ϕ01σ2ϕ02 cos(k1π) cos(k2π)−
ε3ϕ014σ2ϕ02 cos(k2π)+ε2σ2ϕ02 cos(k2π)−ε23σ3−ε3ϕ02σ42ϕ01 cos(k1π)+ε22ϕ01 cos(k1π)

µ4 = ε1σ11 +σ12ϕ01 cos(k1π)−ε3ϕ014σ1 +ε2σ1 + 1σ2ϕ02 cos(k2π)+ε1σ2ϕ02 cos(k2π)−
ε13σ3 + ε3ϕ024σ3 + ε3ϕ013σ4 − ε3ϕ021σ4 + ε21 + ε12ϕ01 cos(k1π)

µ5 = 1σ1 + ε1σ1 + σ2ϕ02 cos(k2π)− 3σ3− ε3ϕ02σ4 + ε11 + 2ϕ01 cos(k1π)− ε3ϕ014 + ε2

µ6 = σ1 + 1 + ε1
Utilizing the Routh-Hurwitz criterion [21] , the stability condition is reduced as follow:

Rth1 = µ6 > 0

Rth2 = µ6 µ5 − µ4 > 0

Rth3 = −µ2
4 + µ2 µ6 + µ4µ5µ6 − µ3µ

2
6 > 0

Rth4 = −µ2
2− µ3 µ

2
4 + µ2 µ4 µ5 + 2µ2 µ3 µ6− µ1 µ4 µ6 + µ3 µ4 µ5 µ6− µ2 µ6 µ

2
5− (µ3µ6)

2 +

µ1 µ5 µ
2
6 > 0

Rth5 = −µ3
2 − µ2 µ3 µ

2
4 + µ1 µ

3
4 + µ4 µ5 µ

2
2 + 2µ3 µ6 µ

2
2 − 3µ1 µ2 µ4 µ6 + µ2 µ3 µ4 µ5 µ6 −

µ1 µ
2
4 µ5 µ6 − (µ2 µ5)

2 µ6 − µ2 (µ3 µ6)
2 + µ1 µ3 µ4 µ

2
6 + 2µ1 µ2 µ5 µ

2
6 − µ2

1 µ
3
6 > 0

Rth6 = [−µ3
2 − µ2 µ3 µ

2
4 + µ1 µ

3
4 + µ4 µ5 µ

2
2 + 2µ3 µ6 µ

2
2 − 3µ1 µ2 µ4 µ6 + µ2 µ3 µ4 µ5 µ6 −

µ1 µ
2
4 µ5 µ6− (µ2 µ5)

2 µ6−µ2 (µ3 µ6)
2 +µ1 µ3 µ4 µ

2
6 +2µ1 µ2 µ5 µ

2
6−µ2

1 µ
3
6]µ1 = Rth5µ1 > 0

In order to verify the stability of our fixed points, we have chosen for the parameters

of our junctions some values already existing in the litterature that we will exploit.

Indeed, the theoretical analysis of stability will be done with the parameters defined as
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 10

follows: 1 = 0.25; 2 = 0.39; 3 = 0.26; 4 = 10−4;ϕ01 = 2π
3

;ϕ02 = π
6
;σ1 = 0.26; σ2 =

0.38;σ3 = 0.24;σ4 = 10−4; ε1 = 10−2; ε2 = 1; ε3 = 0.22 (see [10, 28–30]). With these

values, we have calculed for the different possible values of cos(k1π) and cos(k2π), the

coefficients µi of the polynomial P (κ) and the determinants Rthi of Routh-Hurwitz

matrices. The results are shown below:

XFor k1 = 2n, k2 = 2n+ 1 or k1 = 2n+ 1, k2 = 2n; n ∈ Z we have:

E∗(α∗, x∗, β∗1 , y
∗, β∗2 , z

∗) =

(
0, 0,

2nπ

ϕ01

, 0,
(2n+ 1)π

ϕ02

, 0

)
or

E∗(α∗, x∗, β∗1 , y
∗, β∗2 , z

∗) =

(
0, 0,

(2n+ 1)π

ϕ01

, 0,
(2n)π

ϕ02

, 0

)
; n ∈ Z

For these values of k1 and k2, one can easily see that Rth6 and Rth5 have opposit signs

because µ1 < 0 . The associate fixed points are then unstables.

XFor k1 = 2n+ 1, k2 = 2n+ 1; n ∈ Z we have:

E∗(α∗, x∗, β∗1 , y
∗, β∗2 , z

∗) =

(
0, 0,

(2n+ 1)π

ϕ01

, 0,
(2n+ 1)π

ϕ02

, 0

)
and

µ1 = 0.16251948684910672; µ2 = −0.26048834332264537;

µ3 = −0.85326469085585943; µ4 = 0.23775452115141066;

µ5 = −8.1392152452497424× 10−3; µ6 = 0.51999999023973942.

The Routh-Hurwitz matrice determinants can be written:

Rth1 = 0.51999999023973942; Rth2 = −0.24198691299949968;

Rth3 = 3.7735345135769732× 10−2; Rth4 = −4.4116460903764199× 10−3;

Rth5 = 1.3043547180701526× 10−3; Rth6 = 2.1198305944997338× 10−4.

We then see also that the stability conditions of Routz-Hurwitz are not verified. Indeed,

Rth2 < 0 and Rth4 < 0. The corresponding fixed points are then unstables.

XFor k1 = k2 = 2n, n ∈ Z we have:

E∗(α∗, x∗, β∗1 , y
∗, β∗2 , z

∗) =

(
0, 0,

2nπ

ϕ01

, 0,
2nπ

ϕ02

, 0

)
;

µ1 = 0.16251948684910794;µ2 = 0.26373873298697659;µ3 = 1.1835036671528403;

µ4 = 0.78229722941634516;µ5 = 2.0234240256949905;µ6 = 0.51999999023973942

and the Routh-Hurwitz matrices determ are:

Rth1 = 0.51999999023973942;Rth2 = 0.26988324419590415;

Rth3 = 2.8253673194647999× 10−2;Rth4 = 4.9740453403018942× 10−3;
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 11

Rth5 = 2.1215522849126617× 10−5;Rth6 = 3.4479358866643453× 10−6

We find that for k1 = k2 = 2n;n ∈ Z, all fixed points are stable. Indeed, all the

determinants of the matrices of Routh-Hurwitz are strictly positive. For n = 0, the

origin point E∗ = (0, 0, 0, 0, 0, 0) is stable as shown in figures 2 and 3. We thus arrive

at the end of the analytical studies of the dynamic system. We can retain from this

analytical study that for this dynamic system, we have an infinity of fixed points whose

stability depends on the conditions of Routh-Hurwitz defined above. For a well-chosen

example, we have shown that fixed points E∗ =
(

0, 0, (2n)π
ϕ01

, 0, (2n)π
ϕ02

, 0
)
, n ∈ Z are

stables. These theoretical results will be checked in the section of the numerical studies

(4) where the electrical and dynamic behaviors of the micro-system are simulated for

the same values of the parameters.

Figure 2. A0:Phase space of the flexural vibration of the micro-beam; T0: Times

hystories of the oscillations of the micro-beam; F1.0: Phase difference phase space of

the first Josephson junction F2.0: Phase difference phase space of the second Josephson

junction; A0 : α̇ = f(α); T0 : α = f(t); F1.0 : β̇1 = f(β1) and F2.0 : β̇2 = f(β2);

ω0 = 1; iG0
= 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ2 =

2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5

4. Numerical study and analysis of the effect of the parameters

The aim of this section is to solve numerically by using the order four Runge-Kutta the

dynamics equations (14), (15) and (16) to search the various dynamics of the MEMS.

Thus, for the values of the control parameters defined as above, we have plotted the

phase diagrams of the micro-beam and of each of the Josephson junctions, then the
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 12

time hystories of the transversal oscillations of the micro-beam; the pulse ω0 and the

amplitude iG0 of the excitation current of the system are chosen equal to 6.10−1 and

8.10−2 respectively as in [10,28–30]. The figure 3 illustrates the electrodynamic behavior

obtained for the micro-system. We find that the phase spaces of the Josephson junctions

Figure 3. A00”:Phase space of the flexural vibration of the micro-beam; T00”: Times

hystories of the oscillations of the micro-beam; P1: Phase difference phase space of

the first Josephson junction P2: Phase difference phase space of the second Josephson

junction; ω0 = 0.6; iG0
= 0.08; 1 = 0.25; 2 = 0.39; 3 = 0.26; 4 = 10−4;ϕ01 =

2π
3 ;ϕ02 = π

6 ;σ1 = 0.26;σ2 = 0.38;σ3 = 0.24;σ4 = 10−4; ε1 = 10−2; ε2 = 1; ε3 = 0.22

(Figure 3 P1 and P2) show attractors that reach their limit cycle more quickly while

the phase spaces (Figure 3 A00 ”) of the micro-beam show that the oscillations of the

micro-beam take a little more time before becoming periodic.The time hystories diagram

(Figure 3 T00 ”) illustrates this phenomenon. Nevertheless it should be noted that the

limit cycle is reached quickly and oscillations of the micro-beam become periodic. When

ignoring start noise, the diagrams in the figure 3 take the form of the figure 4. These

diagrams confirm the origin as the fixed point of the electrodynamic system as provided

by the analytical analyzes. We can also hypothesize that Josephson junctions forced

the micro-beam to return to their oscillatory dynamic mode.

Now, the goal is to prove the existence or the possibility of having chaotic regimes

with at least one of the control parameters of the studied system. To achieve this, we

chose to use the iG0 excitation current for two basic reasons. The first reason is that iG0

is the control parameter of the electrodynamic system whose modeling is the easiest.

Yamapi and Filatrella in [20] have shown for a system consisting of Josephson junction

and an electric resonator that the attractor characterized by a frequency locked to the

resonator is most stable for low bias current, when the power dissipated in the cavity is
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 13

Figure 4. A00”:Phase space of the flexural vibration of the micro-beam; T00”: Times

hystories of the oscillations of the micro-beam; F1C: Phase difference phase space of

the first Josephson junction F2C: Phase difference phase space of the second Josephson

junction; ω0 = 0.6; iG0 = 0.08; 1 = 0.25; 2 = 0.39; 3 = 0.26; 4 = 10−4;ϕ01 =
2π
3 ;ϕ02 = π

6 ;σ1 = 0.26;σ2 = 0.38;σ3 = 0.24;σ4 = 10−4; ε1 = 10−2; ε2 = 1; ε3 = 0.22

small. Indeed, to check if this results is in agreement with the results of our researches

is the second motivation of this choice. Note that the limit cycle of the figure 4 was

actually obtained for a small value of the excitation current (iG0 = 8.10−2). By varying

iG0 from 8.10−2 to 5.10−1, we notice that the MEMS has a chaotic behavior (see figure

5).

As expected, the increase in the amplitude of the excitation current considerably

changes the oscillatory dynamics of the system. We go from periodic modes to chaotic

modes at all levels. This is well justified by the nature of the time hystories diagram

(see figure 5(p)) which illustrates a completely aperiodic behavior of the mechanical

resonator. From all the foregoing, it can be remembered that the system under study

has many chaotic behaviors that can be modulated by means of the excitation current.

This result is in perfect conformity with that found by Yamapi and Filatrella in [20]

for an electric resonator. The next step in our work is to evaluate the influence of

each control parameter on our electro-dynamic system and to bring out the relationship

between this parameter and the constituents of our MEMS. Thus, in order to check

the rich dynamics of the MEMS, we plot the bifurcation diagram and its corresponding

Lyapunov exponents, phase portraits and times hystories. We analyze the effects of

each parameters of MEMS in the following subsections.
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 14

Figure 5. o:Phase space of the flexural vibration of the micro-beam; p: Times

hystories of the oscillations of the micro-beam; q: Phase difference phase space of

the first Josephson junction r: Phase difference phase space of the second Josephson

junction; ω0 = 0.6; iG0 = 0.5; 1 = 0.25; 2 = 0.39; 3 = 0.26; 4 = 10−4;ϕ01 =
2π
3 ;ϕ02 = π

6 ;σ1 = 0.26;σ2 = 0.38;σ3 = 0.24;σ4 = 10−4; ε1 = 10−2; ε2 = 1; ε3 = 0.22

4.1. Influence of the parameter ϕ02

We find the effect of parameter ϕ02 on the dynamic of system. Figure 6 shows the

bifurcation diagram and the Lyapunov exponents for this parameter where the other

parameters are fixed. As it can been seen, the micro-beam can present the periodic,

quasi-periodic and chaotic behaviors when the initial phase of second Josephson junction

varied.

For appropriate values of ϕ02 choice in each domain of figure 6, we plot in figure

7 and figure 8 the phase protrait and times hystories of MEMS. It noted that for

ϕ02 = −3.494 the MEMS has the quasi-periodic oscillations (see figure 7) while the

chaotic behavior is observed for ϕ02 = 1 (see figure 8). We can conclude that dynamic

of MEMS is influenced by the initial phase of second Josephson junction and it is

observed a similarity between the two Josephson junctions and the micro-beam.

4.2. Influence of the prameter 3

In this subsection, we use 3 as a bifurcation parameter and we plot in figure 9 the

bifurcation diagram and its corresponding Lyapunov exponents.

For −4.5 < 3 < −0.3 the micro-beam vibrate periodically with period 1T and

when 3 > −0.3, we have the chaotic vibrations generaly. These different influences
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 15

Figure 6. BF2:Bifurcation diagram; LF2: Lyapunov Exponent; ω0 = 1; iG0 = 2; 1 =

1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;σ1 = 1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 =

0.9; ε3 = 0.5

of 3 on the dynamics of the micro-beam once again show the influence of a damping

coefficient of second Josephson junction on the latter. The figure 10 illustrates the

chaotic vibration of the MEMS for 3 = 0.34. It can be seen from the graphs in figure

10 that any chaotic behavior of the phase difference of one of the Josephson junctions

has the same effect on the dynamics of the micro-beam. It is the same for the regular

behaviors (see figures 11 and 12). Thus, it can be noted that the junction system confers

or imposes its dynamic on the micro-beam. Moreover, there is a degeneracy of the limit

cycle when 3 believes. In fact, for 3 < −0.3 we have a mono-periodic limit cycle but

for 3 = 0.48 , a first degeneracy is shown and the period of the limit cycle goes from 1

to 3 (Figure 11). For 3 = 0.7973 we notice a second degeneracy and the period of the

limit cycle goes from 3 to 5 (Figure 12). Note also that the origin is not the fixed point

for these values of the chosen parameters (see Figure 11 F1.2A and Figure 12 F1.2B).

This confirms the plurality of fixed points of the system.

4.3. Influence of parameter 4

Using 4 as the bifurcation parameter, we search the route to chaos of micro-beam and

results are plotted in figure 13. It is found that the beam has periodic oscillations

for 1 < 4 < 4.8 while the beam and the two Josephson junctions have each chaotic
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 16

Figure 7. A11:Phase space of the flexural vibration of the micro-beam; T11: Times

hystories of the oscillations of the micro-beam; F111: Phase difference phase space of

the first Josephson junction F211: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0 = 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = −3.494;σ1 =

1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5

oscillations when  ≥ 4.8. For example, figure 14 shows the chaotic motions for 4 = 5.54

and confirm the bifurcation and Lyapunov exponents predictions.

4.4. Influence of the parameter σ1

The parameter σ1 is a very important parameter for our system (damping coefficient of

the flexural vibration of the micro-beam). Figure 15 represents the bifurcation diagram

and its corresponding Lyapunov exponent when σ1 varied and other parameters are

fixed.

As can been seen, for 1 ≤ σ1 ≤ 2.84, the oscillations are periodic and the associated

attractor is monocyclic. For σ1 ' 2.68, we observe two distinct periods of oscillation

with a two periodic attractor. We were particularly interested in the study of this point

given the appearance of the bifurcation diagram of the parameter σ1 at this point. This

dynamic is illustrated by figure 16 if σ1 = 2.68. When σ1 ∈ ]2.84; 2.94[, as predicted

by the bifurcation diagram, we obtain a two limit cycles which are shown in figure 17

for σ1 = 2.89. The chaotic motions are observed σ1 ≥ 2.94. We can conclude that

the damping coefficient of the flexural vibration of the micro-beam affect the MEMS

dynamics and the beam and the two Josephson junctions are the same behaviors when σ1
varied. From all the foregoing it can be concluded that the dynamic of the micro-beam

Page 16 of 37AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-108161.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 17

Figure 8. A12 :Phase space of the flexural vibration of the micro-beam; T12: Times

hystories of the oscillations of the micro-beam; F112: Phase difference phase space of

the first Josephson junction F212: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0 = 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = 1.7;σ1 =

1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5

is in agreement with that of Josephson junctions. The dynamics of the entire system

can be controlled through one of the elements of the electrical or mechanical part. This

shows the ability of this MEMS due to its sensitivity at all levels in the field of physical

applications. Since the damping of the vibrating membrane of the micro-beam is also

proportional to the speed of the latter, it can be concluded that the whole dynamics

of the MEMS can be modeled by the variation of the magnetic force ~F = is × ~B ∧ ~L.

Indeed, according the Newton’s second law we have:
∑ ~Fext = m

~dα̇
dt

. Because the

actuating force ~F depends strongly on the intensity of the magnetic field ~B, we can

conclude that this MEMS according to its electrodynamic modes can not only detect

the magnetic fields but also provide information on the characteristics of the magnetic

field in which it bathed.

4.5. Influence of the parameter σ2

The parameter σ2 coefficient of sin(ϕ02β2) is also an important control parameter of the

dynamical system studied. Should we recall, our main objective to study to examine the

influence of Josephson junctions on the vibrational modes of a micro-beam. The various

dynamics predicted by the bifurcation diagram of figure 18 above confirm the action of

the second Josephson junction on the vibratory modes of the micro-beam. Figures 19
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 18

Figure 9. BF2:Bifurcation diagram; LF2: Lyapunov Exponent; ω0 = 1; iG0 = 2; 1 =

1; 2 = 3; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 =

0.9; ε3 = 0.5

and 20 illustrate some of the periodic dynamic behaviors of the MEMS for σ2 = 5.66

and σ2 = 9.09 respectively. The chaotic mode is confirmed for σ2 = 8.1 (see figure21).

4.6. Influence of the parameters σ3, σ4, ε1, and ε3

We then studied the influence of σ3, σ4, ε1, and ε3 on dynamic of the MEMS. For this

purpose, we plot the bifurcation and its corresponding Lyapunov exponents in figures

22, 23, when σ3, σ4 are varied respectively. It noted that the chaotic oscillations appear

in small domain while the regular vibrations exist on the rest domain. Figure 24 show

the chaotic vibration for the micro-beam and for the two Josephson junctions when

σ4 = 3.34 chosen in chaotic domain predict by bifurcation diagram. This confirm the

bifurcation and Lyapunov predictions. In figures 25, 26 we plot the bifurcation and

its corresponding Lyapunov exponents by using ε1 and ε3 as bifurcation parameters.

The same observations in the cases of σ3, σ4 are made. Figure 27 represents the phase

portraits and times hystories of the MEMS for ε1 = 1.7 and confirm the bifurcation

and Lyapunov exponents predictions. Although these observations, we noticed that 4,

σ4, and ε3 which depend of the magnetic field ~B favor more regular vibrations and

therefore can be used to control the chaotic vibrations of the MEMS. In the absence of

the magnetic field (B = 0), the micro-beam should have a static behavior that is fixed in
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 19

Figure 10. A2:Phase space of the flexural vibration of the micro-beam; T2: Times

hystories of the oscillations of the micro-beam; F12: Phase difference phase space of

the first Josephson junction F22: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0
= 2; 1 = 1; 2 = 3; 3 = 0.34; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 =

1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5

Figure 11. A.2A:Phase space of the flexural vibration of the micro-beam; T.2A:

Times hystories of the oscillations of the micro-beam; F1.2A: Phase difference phase

space of the first Josephson junction F2.2A: Phase difference phase space of the second

Josephson junction; ω0 = 1; iG0
= 2; 1 = 1; 2 = 3; 3 = 0.48; 4 = 2;ϕ01 = 1;ϕ02 =

−3.494;σ1 = 1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5
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Figure 12. A.2B:Phase space of the flexural vibration of the micro-beam; T.2B:

Times hystories of the oscillations of the micro-beam; F1.2B: Phase difference phase

space of the first Josephson junction F2.2B: Phase difference phase space of the second

Josephson junction; ω0 = 1; iG0
= 2; 1 = 1; 2 = 3; 3 = 0.7973; 4 = 2;ϕ01 = 1;ϕ02 =

−3.494;σ1 = 1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5

its equilibrium position. Assuming that the dynamics of the micro-beam influence that

of the Josephson junctions, we should note a stability expressed by a periodic oscillation

at the junctions under the effect of the generator excitation. This hypothesis has been

verified as shown by the numerical results of the figure 28. The time hystories ( Figure

28:f) of the flexural vibration is linear. This justifies the absence of oscillation of the

vibrating membrane of the micro-beam and its equilibrium state. Figures 28: g and h

representing the phase spaces of the junctions illustrate a periodic behavior. We can

then confirm that for this MEMS, the micro-beam dynamics and electrical behaviors

are in good agreement. It should also be noted that this MEMS can serve as a magnetic

field detector and a good high precision actuator.

4.7. Influence of the parameter iG0

After studying the influence of the internal parameters of the MEMS, it is important

to analyze the effects of the external excitation. For this end, we plot the bifurcation

diagram and its corresponding Lyapunov exponents when the amplitude iG0 of external

voltage varied and other parameter are fixed. The results are presented in figure 29.

It observed that the beam has periodic, multi-periodic, quasi-periodic and chaotic

vibrations for iG0 ∈ [0, 15]. It also obtained from this figure the intermittency

phenomenon. The chaotic vibration obtained is illustrated in figure 30 for iG0 = 5.45.
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Figure 13. BF2: Bifurcation diagram ; LF2: Lyapunov Exponent ; ω0 = 1; iG0 =

2; 1 = 1; 2 = 3; 3 = −1.6;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 =

1.5; ε2 = 0.9; ε3 = 0.5

The excitation voltage influence highly the MEMS dynamics and can be used to vary

the dynamics of the beam according to the wishes of the user.

5. Conclusion

This study focused on a MEMS whose essential components are the Josephson junction

and the micro-beam. The main objectives of this study is to analyze the influence of

the voltage-frequency converters that are the Josephson junctions on the dynamics of

the micro-beam and to evaluate the utility of this type of MEMS. For this dynamic

system, an infinite number of fixed points is obtained. For a well chosen example,

on the one hand, we have shown that the fixed points are stable when k = 2n and

unstable for k = 2n + 1. Through the phase spaces on the other hand, we have shown

that the dynamic behaviors of the micro-beam are strongly related to those of the two

Josephson junctions. The chaotic behavior of one induces that of the micro-beam. The

influence of each control parameter has been studied and some dynamics have been

illustrated. It goes out of this study also that several chaotic regimes are obtained.

Given its proven importance since the XXe Century, chaos serves in several scientific

fields. The one we have studied here can be used in the field of communication and

information on the one hand and in the field of the determination of weak magnetic
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Figure 14. A3:Phase space of the flexural vibration of the micro-beam; T3: Times

hystories of the oscillations of the micro-beam; F1.3: Phase difference phase space of

the first Josephson junction F2.3: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0 = 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 5.54;ϕ01 = 1;ϕ02 = 0.5;σ1 =

1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5

fields on the other hand. The microscopic size and the convertibility voltage-frequency

of this MEMS confers several other interesting potentialities to it. In another work, we

intend to render energy autonomous this MEMS in order to find applications in the field

of space projects where the economy electrical energy remains an asset for the devices.

The main objectives of our next research will be to first build this MEMS in order to

find convincing applications and in a second time, extend this study to the nanoscale

given the potential, progress and projections given by Roukes in [31] on NEMS (Nano-

Electro-Mechanical-System).
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Figure 17. A9:Phase space of the flexural vibration of the micro-beam; T9: Times

hystories of the oscillations of the micro-beam; F19: Phase difference phase space

of the first Josephson junction F29: Phase difference phase space of the second

Josephson junction; ω0 = 1; iG0
= 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2ϕ01 = 1;ϕ02 =

0.5;σ1 = 2.89;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 26

Figure 18. BS2: Bifurcation Diagram; LS2: Lyapunov Exponent; ω0 = 1; iG0 =

2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ3 = 1;σ4 = 2; ε1 =

1.5; ε2 = 0.9; ε3 = 0.5
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 27

Figure 19. A6:Phase space of the flexural vibration of the micro-beam; T6: Times

hystories of the oscillations of the micro-beam; F16: Phase difference phase space of

the first Josephson junction F26: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0 = 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2ϕ01 = 1;ϕ02 = 0.5;σ1 =

1;σ2 = 5.66;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5
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Figure 20. A10:Phase space of the flexural vibration of the micro-beam; T10: Times

hystories of the oscillations of the micro-beam; F110: Phase difference phase space of

the first Josephson junction F210: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0
= 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2ϕ01 = 1;ϕ02 = 0.5;σ1 =

1;σ2 = 9.09;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5

Page 28 of 37AUTHOR SUBMITTED MANUSCRIPT - PHYSSCR-108161.R3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 29

Figure 21. A4:Phase space of the flexural vibration of the micro-beam; T4: Times

hystories of the oscillations of the micro-beam; F14: Phase difference phase space of

the first Josephson junction F24: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0 = 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2ϕ01 = 1;ϕ02 = 0.5;σ1 =

1;σ2 = 8.1;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5
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Figure 22. BS3: Bifurcation Diagram; LS3: Lyapunov Exponent; ω0 = 1; iG0 =

2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ2 = 2;σ4 = 2; ε1 =

1.5; ε2 = 0.9; ε3 = 0.5
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Figure 23. BS4: Bifurcation Diagram; LS4: Lyapunov Exponent ; ω0 = 1; iG0 =

2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ2 = 2;σ3 = 1; ε1 =

1.5; ε2 = 0.9; ε3 = 0.5
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 32

Figure 24. A7:Phase space of the flexural vibration of the micro-beam; T7: Times

hystories of the oscillations of the micro-beam; F17: Phase difference phase space of

the first Josephson junction F27: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0 = 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2ϕ01 = 1;ϕ02 = 0.5;σ1 =

1;σ2 = 2;σ3 = 1;σ4 = 3.34; ε1 = 1.5; ε2 = 0.9; ε3 = 0.5
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 33

Figure 25. BE1:Bifurcation Diagram; LE1: Lyapunov Exponent; ω0 = 1; iG0 =

2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ2 = 2;σ3 = 1;σ4 =

1; ε2 = 0.9; ε3 = 0.5
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Figure 26. BE3:Bifurcation Diagram; LE3: Lyapunov Exponent ; ω0 = 1; iG0 =

2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ2 = 2;σ3 = 1;σ4 =

1; ε1 = 1.5ε2 = 0.9
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Figure 27. A1:Phase space of the flexural vibration of the micro-beam; T1: Times

hystories of the oscillations of the micro-beam; F11: Phase difference phase space of the

first Josephson junction; F21: Phase difference phase space of the second Josephson

junction; ω0 = 1; iG0 = 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2ϕ01 = 1;ϕ02 = 0.5;σ1 =

1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.7; ε2 = 0.9; ε3 = 0.5

Figure 28. f: Times hystories of the oscillations of the micro-beam; g: Phase difference

phase space of the first Josephson junction h: Phase difference phase space of the second

Josephson junction; ω0 = 1; iG0
= 2; 1 = 1; 2 = 3; 3 = −1.6; 4 = 0ϕ01 = 1;ϕ02 =

0.5;σ1 = 1;σ2 = 2;σ3 = 1;σ4 = 0; ε1 = 1.7; ε2 = 0.9; ε3 = 0
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Modeling and study of dynamics of micro-beam coupled to two Josephson junctions 36

Figure 29. BI0: Bifurcation Diagram ; Li0: Lyapunov Exponent ; ω0 = 1; 1 = 1; 2 =

3; 3 = −1.6; 4 = 2;ϕ01 = 1;ϕ02 = 0.5;σ1 = 1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5; ε2 =

0.9; ε3 = 0.5
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Figure 30. A8:Phase space of the flexural vibration of the micro-beam; T8: Times

hystories of the oscillations of the micro-beam; F18: Phase difference phase space of

the first Josephson junction;F28; Phase difference phase space of the second Josephson

junction: ω0 = 1; iG0 = 5.45; 1 = 1; 2 = 3; 3 = −1.6; 4 = 2ϕ01 = 1;ϕ02 = 0.5;σ1 =

1;σ2 = 2;σ3 = 1;σ4 = 2; ε1 = 1.5ε2 = 0.9; ε3 = 0.5
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