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We study the existence of mild and classical solutions are proved for a class of impulsive integrodifferential equations with nonlocal
conditions in Banach spaces.Themain results are obtained by usingmeasure of noncompactness and semigroup theory. An example
is presented.

1. Introduction

In this present paper, we are concerned with the existence of
mild and classical solutions are proved for a class of impulsive
integrodifferential equations with nonlocal conditions:

𝑢
󸀠

(𝑡) = 𝐴𝑢 (𝑡)

+ 𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠, ∫

𝑎

0

ℎ (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠) ,

𝑡 ∈ [0, 𝑎] , 𝑡 ̸= 𝑡
𝑖

𝑢 (0) = 𝑢
0
+ 𝑔 (𝑢) ,

Δ𝑢 (𝑡
𝑖
) = 𝐼
𝑖
(𝑢 (𝑡
𝑖
)) , 𝑖 = 1, 2, . . . , 𝑝,

(1)

where𝐴 is the infinitesimal generator of a𝐶
0
-semigroup𝑇(𝑡)

in a Banach space𝑋 and 𝑓 : [0, 𝑎] × 𝑋 ×𝑋 → 𝑋, 𝑘 : [0, 𝑎] ×

[0, 𝑎] × 𝑋 → 𝑋, ℎ : [0, 𝑎] × [0, 𝑎] × 𝑋 → 𝑋,0 < 𝑡
1
<

𝑡
2
< 𝑡
3
< ⋅ ⋅ ⋅ < 𝑡

𝑝
< 𝑎 and 𝐼

𝑖
: 𝑋 → 𝑋, 𝑖 = 1, 2, . . . , 𝑝

are impulsive functions and 𝑔 : PC([0, a];X) → X, u0 ∈ X,

and𝑋 is a real Banach space with norm ‖ ⋅ ‖. Δ𝑢(𝑡
𝑖
) = 𝑢(𝑡

+

𝑖
) −

𝑢(𝑡
−

𝑖
), 𝑢(𝑡+
𝑖
), 𝑢(𝑡
−

𝑖
) denote the right and left limits of 𝑢 at 𝑡

𝑖
,

respectively.
Integrodifferential equations are important for investigat-

ing some problems raised from natural phenomena. They
have been studied in many different aspects. The theory of
semigroups of bounded linear operators is closely related to
the solution of differential and integrodifferential equations
in Banach spaces. In recent years, this theory has been applied
to a large class of nonlinear differential equations in Banach
spaces. We refer to the papers [1–5] and the references cited
therein. Based on the method of semigroups, existence, and
uniqueness of mild, strong, and classical solutions of semi-
linear evolution equations were discussed by Pazy [6]. In [7],
Xue studied the semilinear nonlocal differential equations
with measure of noncompactness in Banach spaces. Lizama
and Pozo [8] investigated the existence of mild solutions for
semilinear integrodifferential equation with nonlocal initial
conditions by using Hausdorff measure of noncompactness
via a fixed point.

In recent years, the impulsive differential equations have
been an object of intensive investigation because of the wide
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possibilities for their applications in various fields of science
and technology as theoretical physics, population dynamics,
economics, and so forth; see [9–13]. The study of semilinear
nonlocal initial problem was initiated by Byszewski [14, 15]
and the importance of the problem lies in the fact that it is
more general and yields better effect than the classical initial
conditions. Therefore it has been extensively studied under
various conditions on the operator 𝐴 and the nonlinearity 𝑓
by several authors [13, 16–18].

Byszwski and Lakshmikantham [19] prove the existence
and uniqueness of mild solutions and classical solutions
when 𝑓 and 𝑔 satisfy Lipschitz-type conditions. Ntouyas and
Tsamotas [20, 21] study the case of compactness conditions of
𝑓 and 𝑇(𝑡). Zhu et al. [22] studied the existence of mild solu-
tions for abstract semilinear evolution equations in Banach
spaces. In [23], Liu discussed the existence and uniqueness
of mild and classical solutions for the impulsive semilinear
differential evolution equation. In [24], the authors studied
the existence of mild solutions to an impulsive differen-
tial equation with nonlocal conditions by applying Darbo-
Sadovskii’s fixed point theorem. In recent paper [25], Ahmad
et al. studied nonlocal problems of impulsive integrodiffer-
ential equations with measure of noncompactness. For some
more recent results and details, see [26–29].

Motivated by the above-mentioned works, we derive
some sufficient conditions for the solutions of integrodif-
ferential equations (1) combining impulsive conditions and
nonlocal conditions. Our results are achieved by applying
the Hausdorff measure of noncompactness and fixed point
theorem. In this paper, we denote by 𝑁 = sup{‖𝑇(𝑡)‖ : 𝑡 ∈
[0, 𝑎]}. Without loss of generality, we let 𝑢

0
= 0.

2. Preliminaries

Let (𝑋, ‖ ⋅ ‖) be a real Banach space.We denote by𝐶([0, 𝑎]; 𝑋)
the space of X-valued continuous functions on [0, 𝑎]with the
norm ‖𝑥‖ = sup ‖𝑥(𝑡)‖, 𝑡 ∈ [0, 𝑎] and by 𝐿1(0, 𝑎; 𝑋) the space
of X-valued Bochner integrable functions on [0, 𝑎] with the
norm ‖𝑓‖

𝐿
1 = ∫

𝑎

0
‖𝑓(𝑡)‖𝑑𝑡.

We put 𝐽
𝑖
= (𝑡
𝑖
, 𝑡
𝑖+1
], 𝑖 = 1, 2, . . . , 𝑝. In order to define the

mild solution of problem (1), we introduce the following set.
PC([0, 𝑎]; 𝑋) = {𝑢 : [0, 𝑎] → 𝑋 : 𝑢 is continuous

on 𝐽
𝑖
, 𝑖 = 0, 1, 2, . . . , 𝑝 and the right limit 𝑢(𝑡

𝑖
) exists, 𝑖 =

1, 2, . . . , 𝑝}.

Definition 1. A function 𝑢 ∈ PC([0, 𝑎]; 𝑋) is a mild solution
of (1) if

𝑢 (𝑡) = 𝑇 (𝑡) [𝑢
0
− 𝑔 (𝑢)]

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠

+ ∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼
𝑖
(𝑢 (𝑡
𝑖
)) , 0 ≤ 𝑡 ≤ 𝑎.

(2)

The Hausdorff measure of noncompactness 𝛽Y (𝐵) is defined
by 𝛽Y (𝐵) = inf{𝑟 > 0, 𝐵 can be covered by finite number of
balls with radii 𝑟} for bounded set 𝐵 in a Banach space 𝑌.

Lemma 2 (see [30]). Let Y be a real Banach space and 𝐵; 𝐶 ⊆

Y be bounded, with the following properties:
(1) 𝐵 is precompact if and only if 𝛽X(𝐵) = 0;
(2) 𝛽Y (𝐵) = 𝛽Y (𝐵) = 𝛽Y (conv𝐵), where 𝐵 and conv𝐵

mean the closure and convex hull of 𝐵, respectively;
(3) 𝛽Y (𝐵) ≤ 𝛽Y (𝐶), where 𝐵 ⊆ 𝐶;
(4) 𝛽Y (𝐵 + 𝐶) ≤ 𝛽Y (𝐵) + 𝛽Y (𝐶), where 𝐵 + 𝐶 = {𝑥 + 𝑦 :

𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶};
(5) 𝛽Y (𝐵 ∪ 𝐶) ≤ max{𝛽Y (𝐵), 𝛽Y (𝐶)};
(6) 𝛽Y (𝜆𝐵) ≤ |𝜆|𝛽Y (𝐵) for any 𝜆 ∈ R;
(7) if the map 𝑄 : 𝐷(𝑄) ⊆ Y → Z is Lipschitz

continuous with constant 𝑘, then 𝛽Z(𝑄𝐵) ≤ 𝑘𝛽Y (𝐵) for
any bounded subset 𝐵 ⊆ 𝐷(𝑄), where Z be a Banach
space;

(8) 𝛽Y (𝐵) = inf{𝑑Y (𝐵, 𝐶); 𝐶 ⊆ Y is precompact} =

inf{𝑑Y (𝐵, 𝐶); 𝐶 ⊆ Y is finite valued}, where 𝑑Y (𝐵, 𝐶)
means the nonsymmetric (or symmetric) Hausdorff
distance between 𝐵 and 𝐶 in Y ;

(9) if {𝑊
𝑛
}
+∞

𝑛=1
is decreasing sequence of bounded closed

nonempty subsets of Y and lim
𝑛→∞

𝛽Y (𝑊𝑛) = 0, then
⋂
+∞

𝑛=1
𝑊
𝑛
is nonempty and compact in Y .

The map 𝑄 : 𝑊 ⊆ Y → Y is said to be a 𝛽Y -contraction
if there exists a positive constant 𝑘 < 1 such that 𝛽Y (𝑄(𝐵)) ≤
𝑘𝛽Y (𝐵) for any bounded closed subset 𝐵 ⊆ 𝑊, where Y is a
Banach space.

Lemma 3 (Darbo-Sadovskii [30]). If 𝑊 ⊆ 𝑌 is bounded
closed and convex, the continuous map 𝑄 : 𝑊 → 𝑊 is a
𝛽Y -contraction, then the map 𝑄 has at least one fixed point in
𝑊.

Lemma 4 (see [2]). If 𝑊 ⊆ 𝑃𝐶([0, 𝑎]; 𝑋) is bounded, then
𝛼(𝑊(𝑡)) ≤ 𝛼

𝑃𝐶
(𝑊) for all 𝑡 ∈ [0, 𝑎], where 𝑊(𝑡) = {𝑢(𝑡) :

𝑢 ∈ 𝑊} ⊆ 𝑋. Furthermore if 𝑊 is equicontinuous on each
interval 𝐽

𝑖
of [0,a], then 𝛼(𝑊(𝑡)) is continuous on [0,a], and

𝛼
𝑃𝐶
(𝑊) = sup{𝛼(𝑊(𝑡)) : 𝑡 ∈ [0, 𝑎]}.

Lemma 5 (see [3]). If {𝑢
𝑛
}
∞

𝑛=1
⊂ 𝐿
1
(0, 𝑎; 𝑋) is uniformly

integrable, then 𝛼({𝑢
𝑛
(𝑡)}
∞

𝑛=1
) is measurable and

𝛼({∫

𝑡

0

𝑢
𝑛
(𝑠) 𝑑𝑠}

∞

𝑛=1

) ≤ 2∫

𝑡

0

𝛼 ({𝑢
𝑛
(𝑠)}
∞

𝑛=1
) 𝑑𝑠. (3)

Lemma 6 (see [31]). If the semigroup 𝑇(𝑡) is equicontinuous
and 𝜂 ∈ 𝐿1(0, 𝑎; 𝑅+), then the set

{𝑡 󳨀→ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠; 𝑢 ∈ 𝐿
1
(0, 𝐾; 𝑅

+
) ,

‖𝑢 (𝑠)‖ ≤ 𝜂 (𝑠) , for a.e 𝑠 ∈ [0, 𝑎] }
(4)

is equicontinuous on [0,a].
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Lemma 7 (see [23]). If 𝑊 is bounded, then for each 𝜀 >

0, there is a sequence {𝑢
𝑛
}
∞

𝑛=1
⊆ 𝑊, such that 𝛼(𝑊) ≤

2𝛼({𝑢
𝑛
}
∞

𝑛=1
) + 𝜀.

3. 𝑔 Is Compact

In this section, we give the existence results of nonlocal
integrodifferential equation (39). Here we list the following
hypotheses.
(𝐻𝑔
1
) The 𝑐

0
semigroup 𝑇(𝑡), 0 ≤ 𝑡 ≤ 𝑎, generated by 𝐴 is

equicontinuous.
(𝐻𝑔
2
) (i) 𝑔 : PC([0, 𝑎]; 𝑋) → 𝑋 is continuous and

compact.
(ii) There exists 𝑀 > 0 such that ‖𝑔(𝑢)‖ ≤

𝑀, for all 𝑢 ∈ PC([0, 𝑎]; 𝑋), and ̂
𝑘(𝑠) =

max{1, ∫𝑠
0
𝑘(𝑠, 𝜏)𝑑𝜏}.

(I) Let 𝐼
𝑖
: 𝑋 → 𝑋 be continuous, compact map and

there are nondecreasing functions 𝑙
𝑖
: 𝑅
+
→ 𝑅
+, satisfying

‖𝐼
𝑖
(𝑥)‖ ≤ 𝑙

𝑖
(‖𝑥‖), 𝑖 = 1, 2, . . . , 𝑝.

(𝐻𝑓
1
) There exists a continuous function 𝑎

𝑘
: [0, 𝑎] ×

[0, 𝑎] → [0,∞) and a nondecreasing continuous
function Ω

𝑘
: 𝑅
+

→ 𝑅
+ such that ‖𝑘(𝑡, 𝑠, 𝑥)‖ ≤

𝑎
𝑘
(𝑡, 𝑠)Ω

𝑘
(‖𝑥‖) for all 𝑥 ∈ 𝑋 a.e. 𝑡, 𝑠 ∈ [0, 𝑎]. And

there exists at least one mild solution to the following
scalar equation:

𝑚(𝑡) = 𝑀𝑁

+𝑀∫

𝑡

0

𝑎
𝑓
(𝑠) Ω
𝑓
(𝑚 (𝑠) , 𝑎

𝑘
(𝑡, 𝑠) Ω

𝑘
𝑚(𝑠) ,

𝑏
ℎ
(𝑡, 𝑠) Ω

ℎ
𝑚(𝑠)) 𝑑𝑠

+𝑀

𝑝

∑

𝑖=1

𝑙
𝑖
(𝑚 (𝑡)) , 𝑡 ∈ [0, 𝑎] .

(5)

(𝐻𝑓
2
) (i) 𝑓(⋅, ⋅, 𝑥, 𝑦) is measurable for 𝑥, 𝑦 ∈ 𝑋, 𝑓(𝑡, ⋅, ⋅, ⋅)

is continuous for a.e. 𝑡 ∈ [0, 𝑎].
(ii) There exist a function 𝑎

𝑓
(⋅) ∈ 𝐿

1
(0, 𝑎, 𝑅

+
)

and an increasing continuous function Ω
𝑓

:

𝑅
+

→ 𝑅
+ such that ‖𝑓(𝑡, 𝑥, 𝑦, 𝑧)‖ ≤

𝑎
𝑓
(𝑡)Ω
𝑓
(‖𝑥‖, ‖𝑦‖, ‖𝑧‖) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and a.e.

𝑡 ∈ [0, 𝑎].
(iii) 𝑓 : [0, 𝑎] × 𝑋 × 𝑋 → 𝑋 is compact.

(𝐻𝑓
3
) There exists a function 𝜂 ∈ 𝐿

1
(0, 𝑎; 𝑅

+
) such that for

any bounded𝐷 ⊂ 𝑋,

𝛽 (𝑓 (𝑡, 𝐷
1
, 𝐷
2
, 𝐷
3
)) ≤ 𝜂 (𝑡) (𝛽 (𝐷

1
) + 𝛽 (𝐷

2
) + 𝛽 (𝐷

3
))

(6)

for a.e. 𝑡 ∈ [0, 𝑎] and for any bounded subset 𝐷 ⊂

PC([0, 𝑎], 𝑋).
Here we let ̂𝑘(𝑠) = ∫

𝑠

0
𝑘(𝑠, 𝜏)𝑑𝜏 and (1 + 2̂𝑘

1
(𝑠) + 2

̂
𝑘
2
(𝑠)) ≤ 𝑄.

Theorem 8. Assume that the hypotheses (𝐻𝑔
1
), (𝐻𝑔

2
), I,

(𝐻𝑓
1
), and (𝐻𝑓

2
) are satisfied; then the nonlocal impulsive

problem (1) has at least one mild solution.

Proof. Let m(t) be a solution of the scalar equation (5); the
map 𝐾 : PC([0, 𝑎]; 𝑋) → PC([0, 𝑎]; 𝑋) is defined by

(𝐾𝑢) (𝑡) = (𝐾
1
𝑢) (𝑡) + (𝐾

2
𝑢) (𝑡) (7)

with

(𝐾
1
𝑢) (𝑡) = 𝑇 (𝑡) 𝑔 (𝑢)

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏)

(𝐾
2
𝑢) (𝑡) = ∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼
𝑖
(𝑢 (𝑡
𝑖
)) ,

(8)

for all 𝑡 ∈ [0, 𝑎].
It is easy to see that the fixedpoint of𝐾 is themild solution

of nonlocal impulsive problem (1).
From our hypotheses, the continuity of 𝐾 is proved as

follows.
For this purpose, we assume that 𝑢

𝑛
→ 𝑢 in

PC([0, 𝑎]; 𝑋). It comes from the continuity of 𝑘 and ℎ

that 𝑘(𝑠, 𝜏, 𝑢
𝑛
(𝜏)) → 𝑘(𝑠, 𝜏, 𝑢(𝜏)) and ℎ(𝑠, 𝜏, 𝑢

𝑛
(𝜏)) →

ℎ(𝑠, 𝜏, 𝑢(𝜏)), respectively.
By Lebesgue convergence theorem,

∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢
𝑛
(𝜏)) 𝑑𝜏 󳨀→ ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢
𝑛
(𝜏)) 𝑑𝜏 󳨀→ ∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏.

(9)

Similarly we have

𝑓(𝑠, 𝑢
𝑛
(𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢
𝑛
(𝜏)) 𝑑𝜏, ∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢
𝑛
(𝜏)) 𝑑𝜏)

󳨀→ 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏, ∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏) ,

(10)

for all 𝑠 ∈ [0, 𝑎]. Consider

󵄩
󵄩
󵄩
󵄩
𝐾𝑢
𝑛
− 𝐾𝑢

󵄩
󵄩
󵄩
󵄩

≤ 𝑁
󵄩
󵄩
󵄩
󵄩
𝑔 (𝑢
𝑛
) − 𝑔 (𝑢)

󵄩
󵄩
󵄩
󵄩

+ 𝑁∫

𝑡

0

(

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑠, 𝑢
𝑛
(𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢
𝑛
(𝜏)) 𝑑𝜏,
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∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢
𝑛
(𝜏)) 𝑑𝜏)

− 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, (𝜏)) 𝑑𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

) 𝑑𝑠

+

𝑝

∑

𝑖=1

𝑀
󵄩
󵄩
󵄩
󵄩
𝐼
𝑖
(𝑢
𝑛
(𝑡
𝑖
)) − 𝐼
𝑖
(𝑢 (𝑡
𝑖
))
󵄩
󵄩
󵄩
󵄩
󳨀→ 0,

(11)

as 𝑛 → ∞. So 𝐾𝑢
𝑛
→ 𝐾𝑢 in PC([0, 𝑎]; 𝑋). That is, 𝐾 is

continuous.
We denote𝑊

0
= {𝑢 ∈ PC([0, a]);X), ‖𝑢(𝑡)‖ ≤ 𝑚(𝑡) for all

𝑡 ∈ [0, 𝑎]}; then𝑊 ⊆ PC([𝑜, 𝑎]; 𝑋) is bounded and convex.
Define 𝑊

1
= conv𝐾(𝑊

0
), where conv means that the

closure of the convex hull in PC([0, 𝑎]; 𝑋).
For any 𝑢 ∈ 𝐾(𝑊

0
), we know that

‖(𝑢) (𝑡)‖ ≤ 𝑀𝑁

+𝑁∫

𝑡

0

𝑎
𝑓
(𝑠) Ω
𝑓
(𝑚 (𝑠) , 𝑎

𝑘
(𝑡, 𝑠) Ω

𝑘
𝑚(𝑠) ,

𝑏
ℎ
(𝑡, 𝑠) Ω

ℎ
𝑚(𝑠)) 𝑑𝑠

+𝑀

𝑝

∑

𝑖=1

𝑙
𝑖
(𝑚 (𝑡)) , 𝑡 ∈ [0, 𝑎] ,

(12)

and by (𝐻𝑓
2
),𝑊
1
⊂ 𝑊
0
.

From the Arzela-Ascoli theorem, to prove the compact-
ness of 𝐾, we can prove that 𝐾

1
𝑢 : 𝑢 ∈ 𝑊

0
is equicontinuous

and𝐾
1
𝑢(𝑡) ⊂ 𝑋 is precompact for 𝑡 ∈ [0, 𝑎]:

󵄩
󵄩
󵄩
󵄩
𝐾
1
𝑢 (𝑡 + 𝜎) − 𝐾

1
𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑇 (𝑡 + 𝜎) 𝑔 (𝑢)

+ ∫

𝑡+𝜎

0

𝑇 (𝑡 + 𝜎 − 𝑠) 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠

− [𝑇 (𝑡) 𝑔 (𝑢) +∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑢 (𝑠) ,∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠]

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄩
󵄩
󵄩
󵄩
[𝑇 (𝑡 + 𝜎) − 𝑇 (𝑢)] 𝑔 (𝑢)

󵄩
󵄩
󵄩
󵄩

+ ∫

𝑡+𝜎

𝑡

‖𝑇 (𝑡 + 𝜎 − 𝑠)‖

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑𝑠

+ ∫

𝑡

0

‖𝑇 (𝑡 + 𝜎 − 𝑠) − 𝑇 (𝑡 − 𝑠)‖

×

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑𝑠

≤ 𝑀𝑁‖𝑇 (𝜎) − 𝐼‖

+ 𝑁∫

𝑡+𝜎

0

𝑎
𝑓
(𝑠) Ω
𝑓
(‖𝑢 (𝑠)‖ , ∫

𝑠

0

𝑎
𝑘
(𝑠, 𝜏)Ω

𝑘
(‖𝑢 (𝑠)‖) 𝑑𝜏,

∫

𝑎

0

𝑏
ℎ
(𝑠, 𝜏)Ω

ℎ
(‖𝑢 (𝑠)‖) 𝑑𝜏) 𝑑𝑠

+ 𝑁∫

𝑡

0

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

[𝑇 (𝜎) − 𝐼] 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑑𝑠.

(13)

Since 𝑓 is compact, 𝑀𝑁‖𝑇(𝜎) − 𝐼‖ and ‖[𝑇(𝜎) −

𝐼]𝑓(𝑠, 𝑢(𝑠), ∫𝑠
0
𝑘(𝑠, 𝜏, 𝑢(𝜏))𝑑𝜏, ∫

𝑎

0
ℎ(𝑠, 𝜏, 𝑢(𝜏))𝑑𝜏)‖ → 0

as 𝜎 → 0 uniformly for 𝑠 ∈ [0, 𝑎] and 𝑢 ∈ PC([0, 𝑎]; 𝑋). This
implies that for any 𝜀

1
> 0 and 𝜀

2
> 0, there exist a 𝛿 > 0 such

that

‖[𝑇 (𝜎) − 𝐼]‖ ≤ 𝜀
1
,

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

[𝑇 (𝜎) − 𝐼]

× 𝑓 (𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏, ∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜀
2
,

(14)

for 0 ≤ 𝜎 < 𝛿 and all 𝑢 ∈ PC([0, 𝑎]; 𝑋). Therefore

‖[𝑇 (𝜎) − 𝐼]‖

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

[𝑇 (𝜎) − 𝐼]

× 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏, ∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝜀
1
+ 𝜀
2
= 𝜀.

(15)

We know that
󵄩
󵄩
󵄩
󵄩
𝐾
1
𝑢 (𝑡 + 𝜎) − 𝐾

1
𝑢 (𝑡)

󵄩
󵄩
󵄩
󵄩

≤ 𝑀𝑁𝜀 + 𝑁Ω
𝑓
(𝑚 (𝑠) ,

󵄩
󵄩
󵄩
󵄩
𝑎
𝑘
(𝑎, 𝑎)

󵄩
󵄩
󵄩
󵄩
, Ω
𝑘
(𝑚 (𝑠)) ,

󵄩
󵄩
󵄩
󵄩
𝑏
ℎ
(𝑎, 𝑎)

󵄩
󵄩
󵄩
󵄩
, Ω
ℎ
(𝑚 (𝑠))) + 𝑁𝜀,

(16)

for 0 ≤ 𝜎 < 𝛿 and all 𝑢 ∈ PC([0, 𝑎]; 𝑋). So {𝐾
1
𝑢 : 𝑢 ∈ 𝑊

0
} is

equicontinuous.
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The set {𝑇(𝑡 − 𝑠)𝑓(𝑠, 𝑢(𝑠), ∫

𝑠

0
𝑘(𝑠, 𝜏, 𝑢(𝜏))𝑑𝜏,∫𝑎

0
ℎ(𝑠,

𝜏, 𝑢(𝜏))𝑑𝜏); 𝑡, 𝑠 ∈ [0, 𝑎], 𝑢 ∈ PC([0, 𝑎]; 𝑋)} is precompact as f
is compact and 𝑇(⋅) is a 𝐶

0
-semigroup.

So 𝐾
1
𝑢(𝑡) ⊂ 𝑋 is precompact as 𝐾

1
𝑢(𝑡) ⊂ 𝑡 conv{𝑇(𝑡 −

𝑠)𝑓(𝑠, 𝑢(𝑠), ∫

𝑠

0
𝑘(𝑠, 𝜏, 𝑢(𝜏))𝑑𝜏, ∫

𝑎

0
ℎ(𝑠, 𝜏, 𝑢(𝜏))𝑑𝜏); 𝑠 ∈ [0, 𝑡],

𝑢 ∈ PC([0, 𝑎]; 𝑋)} for all 𝑡 ∈ [0, 𝑎].𝑊
1
is equicontinuous on

each interval 𝐽
𝑖
of [0, 𝑎]. For 𝑡

𝑖
≤ 𝑡 < 𝑡+𝜎 ≤ 𝑡

𝑖+1
, 𝑖 = 1, 2, . . . , 𝑝,

we have, using the semigroup properties
󵄩
󵄩
󵄩
󵄩
(𝐾
2
𝑢) (𝑡 + 𝜎) − (𝐾

2
𝑢) (𝑡)

󵄩
󵄩
󵄩
󵄩

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∑

0<𝑡
𝑖
<𝑡+𝜎

𝑇 (𝑡 + 𝜎 − 𝑡
𝑖
) 𝐼
𝑖
(𝑥 (𝑡
𝑖
))

− ∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 + 𝜎 − 𝑡
𝑖
) 𝐼
𝑖
(𝑥 (𝑡
𝑖
))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

+

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 + 𝜎 − 𝑡
𝑖
) 𝐼
𝑖
(𝑥 (𝑡
𝑖
))

− ∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼
𝑖
(𝑥 (𝑡
𝑖
))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ ∑

0<𝑡
𝑖
<𝑡+𝜎

󵄩
󵄩
󵄩
󵄩
𝑇 (𝑡 + 𝜎 − 𝑡

𝑖
) 𝐼
𝑖
(𝑥 (𝑡
𝑖
))
󵄩
󵄩
󵄩
󵄩

+ ∑

0<𝑡
𝑖
<𝑡

󵄩
󵄩
󵄩
󵄩
𝑇 (𝑡 + 𝜎 − 𝑡

𝑖
) 𝐼
𝑖
(𝑥 (𝑡
𝑖
)) − 𝑇 (𝑡 − 𝑡

𝑖
) 𝐼
𝑖
(𝑥 (𝑡
𝑖
))
󵄩
󵄩
󵄩
󵄩
,

(17)
which follows that {𝐾

2
𝑢 : 𝑢 ∈ 𝑊

0
} is equicontinuous on

each 𝐽
𝑖
due to the equicontinuous of 𝑇(𝑡) and hypotheses

(I). Therefore,𝑊
1
⊂ PC([0, 𝑎]; 𝑋) is bounded closed convex

nonempty and equicontinuous on each interval 𝐽
𝑖
, 𝑖 =

0, 1, 2, . . . , 𝑝.
We define 𝑊

𝑛+1
= conv𝐾(𝑊

𝑛
), for 𝑛 = 1, 2, . . . , 𝑝. From

above we know that {𝑊
𝑛
}
∞

𝑛=1
is a decreasing sequence of

bounded, closed, convex nonempty subsets in PC([0, 𝑎]; 𝑋)
and equicontinuous on each 𝐽

𝑖
, 𝑖 = 1, 2, . . . , 𝑝.

Now for 𝑛 ≥ 1 and 𝑡 ∈ [0, 𝑎], 𝑊
𝑛
(𝑡) and 𝐾(𝑊

𝑛
(𝑡)) are

bounded subsets of𝑋. Hence for any 𝜀 > 0, there is a sequence
{𝑢
𝑘
}
∞

𝑘=1
⊂ 𝑊
𝑛
such that (see, e.g., [2, page 125])

𝛽 (𝑊
𝑛+1

(𝑡))

= 𝛽 (𝐾𝑊
𝑛
(𝑡))

≤ 2𝛽 (𝑇 (𝑡) 𝑔 ({𝑢
𝑘
}
∞

𝑘=1
))

+2𝛽(∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠,{𝑢
𝑘
(𝑠)}
∞

𝑘=1
,∫

𝑠

0

𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏) 𝑑𝑠)

+ 2𝛽(

𝑝

∑

𝑖=1

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼
𝑖
{𝑢
𝑘
(𝑡
𝑖
)}
∞

𝑘=1
) + 𝜀,

(18)
for 𝑡 ∈ [0, 𝑎].

From the compactness of𝑔 and 𝐼
𝑖
, by Lemmas 2 and 5 and

(𝐻𝑓
3
), we have

𝛽 (𝑊
𝑛+1

(𝑡))

≤ 2𝛽(∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, {𝑢
𝑘
(𝑠)}
∞

𝑘=1
,∫

𝑠

0

𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏) 𝑑𝑠) + 𝜀

≤ 4𝑁∫

𝑡

0

𝛽(𝑓(𝑠, {𝑢
𝑘
(𝑠)}
∞

𝑘=1
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏))𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠)(𝛽 ({𝑢
𝑘
(𝑠)}
∞

𝑘=1
)+𝛽(∫

𝑠

0

𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏)

+𝛽(∫

𝑎

0

ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏))𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠) (𝛽 ({𝑢
𝑘
(𝑠)}
∞

𝑘=1
)

+ 2∫

𝑠

0

𝛽 (𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏)

+2∫

𝑎

0

𝛽 (ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏)) 𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠) (𝛽 ({𝑢
𝑘
(𝑠)}
∞

𝑘=1
)

+ 2(∫

𝑠

0

𝜂
1
(𝑠, 𝜏) 𝑑𝜏)𝛽 ({𝑢

𝑘
(𝑠)}
∞

𝑘=1
)

+2(∫

𝑎

0

𝜂
2
(𝑠, 𝜏) 𝑑𝜏)𝛽 ({𝑢

𝑘
(𝑠)}
∞

𝑘=1
)) 𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠) (𝛽 ({𝑢
𝑘
(𝑠)}
∞

𝑘=1
) + 2

̂
𝑘
1
(𝑠) 𝛽 ({𝑢

𝑘
(𝑠)}
∞

𝑘=1
)

+2
̂
𝑘
2
(𝑠) 𝛽 ({𝑢

𝑘
(𝑠)}
∞

𝑘=1
)) 𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠) (𝛽 (𝑊
𝑛
(𝑠)) + 2

̂
𝑘
1
(𝑠) 𝛽 (𝑊

𝑛
(𝑠))

+2
̂
𝑘
2
(𝑠) 𝛽 (𝑊

𝑛
(𝑠))) 𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠) 𝛽 (𝑊
𝑛
(𝑠)) (1 + 2

̂
𝑘
1
(𝑠) + 2

̂
𝑘
2
(𝑠)) 𝑑𝑠 + 𝜀

≤ 4𝑁𝑄∫

𝑡

0

𝜂 (𝑠) 𝛽 (𝑊
𝑛
(𝑠)) 𝑑𝑠 + 𝜀.

(19)

Since 𝜀 > 0 is arbitrary, it follows from the above inequality
that

𝛽 (𝑊
𝑛+1

(𝑡)) ≤ 4𝑁𝑄∫

𝑡

0

𝜂 (𝑠) 𝛽PC (𝑊𝑛 (𝑠)) 𝑑𝑠, (20)
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for all 𝑡 ∈ [0, 𝑎]. Since𝑊
𝑛
is decreasing for 𝑛, we define𝑓

𝑛
(𝑡) =

lim
𝑛→∞

𝛽(𝑊
𝑛
(𝑡)) for all 𝑡 ∈ [0, 𝑎]. From (20), we have

𝑓
𝑛+1

(𝑡) ≤ 4𝑁𝑄∫

𝑡

0

𝜂 (𝑠) 𝑓
𝑛
(𝑠) 𝑑𝑠, (21)

for 𝑡 ∈ [0, 𝑎], which implies that 𝑓
𝑛
(𝑡) = 0 for all 𝑡 ∈ [0, 𝑎]. By

Lemma 4, we know that

lim
𝑛→∞

𝛽PC (𝑊𝑛) = 0. (22)

Using Lemma 2, we also know that

𝑊 =

∞

⋂

𝑛=1

𝑊
𝑛 (23)

is convex, compact, and nonempty in PC([0, 𝑎]; 𝑋) and
𝐾(𝑊) ⊂ 𝑊.

By the famous Schauder’s fixed point theorem, there exists
at least one mild solution 𝑢 of the problem (1), where 𝑢 ∈ 𝑊
is a fixed point of the continuous map𝐾.

4. 𝑔 Is Lipschitz

In this section, we discuss the problem (1) when g is Lipschitz
continuous and 𝐼

𝑖
, 𝑖 = 1, 2, . . . , 𝑝 is not compact. We replace

hypotheses (𝐻𝑓
2
), (𝐼) by

(𝐻𝑓
2
)
󸀠There is a constant 𝐿 ∈ (0, 1/𝑀) such that ‖𝑔(𝑢) −

𝑔(V)‖ ≤ 𝐿‖𝑢 − V‖PC for all 𝑢, V ∈ PC([0, 𝑎]; 𝑋).
(I󸀠) There exists 𝐿

𝑖
> 0, 𝑖 = 1, 2, . . . , 𝑝, such that ‖𝐼

𝑖
(𝑢) −

𝐼
𝑖
(V)‖ ≤ 𝐿

𝑖
‖𝑢 − V‖, for all 𝑢, V ∈ 𝑋.

Theorem 9. Assume that the hypotheses (𝐻𝑔
1
), (𝐻𝑓

2
)
󸀠, (I󸀠),

(𝐻𝑓
1
)–(𝐻𝑓

3
) are satisfied. Then the nonlocal impulsive prob-

lem (1) has at least one mild solution on [0,a], provided that

𝑀𝐿 + 4𝑁𝑄∫

𝑡

0

𝜂 (𝑠) 𝑑𝑠 + 2𝑁

𝑝

∑

𝑖=1

𝐿
𝑖
< 1. (24)

Proof. Define the operator 𝐾 : PC([0, 𝑎]; 𝑋) →

PC([0, 𝑎]; 𝑋) by

(𝐾𝑢) (𝑡) = (𝐾
1
𝑢) (𝑡) + (𝐾

2
𝑢) (𝑡) + (𝐾

3
𝑢) (𝑡) . (25)

With

(𝐾
1
𝑢) (𝑡) = 𝑇 (𝑡) 𝑔 (𝑢) ,

(𝐾
2
𝑢) (𝑡) = ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠,

(𝐾
3
𝑢) (𝑡) = ∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼
𝑖
(𝑢 (𝑡
𝑖
)) ,

(26)

for all 𝑢 ∈ PC([0, 𝑎]; 𝑋).
Define 𝑊

0
= {𝑢 ∈ PC([0, 𝑎]; 𝑋)} : ‖𝑢(𝑡)‖ ≤ 𝑚(𝑡) for all

𝑡 ∈ [0, 𝑎], and let𝑊 = 𝐾𝑊
0
.

Then from the proof of Theorem 8, we know that 𝑊
is a bounded closed convex and equicontinuous subset of
PC([0, 𝑎]; 𝑋) and 𝐾𝑊 ⊂ 𝑊. We will prove that 𝐾 is
𝛽PC-contraction on 𝑊. Then Darbo-Sadovskii fixed point
theorem can be used to get a fixed point of 𝐾 in 𝑊, which
is a mild solution of (1).

We first show that𝐾
1
is Lipschitz on PC([0, 𝑎]; 𝑋).

In fact, take 𝑢, V ∈ PC([0, 𝑎]; 𝑋) arbitrary.Then by (𝐻𝑓
2
)
󸀠,

we have

󵄩
󵄩
󵄩
󵄩
(𝐾
1
𝑢) (𝑡) − (𝐾

2
𝑢) (𝑡)

󵄩
󵄩
󵄩
󵄩

≤ 𝑀
󵄩
󵄩
󵄩
󵄩
𝑔 (𝑢) − 𝑔 (V)󵄩󵄩󵄩

󵄩
≤ 𝑀𝐿‖𝑢 − V‖PC ∀𝑡 ∈ [0, 𝑎] .

(27)

It follows that ‖𝐾
1
𝑢 − 𝐾

1
V‖ ≤ 𝑀𝐿‖𝑢 − V‖PC for all 𝑢, V ∈

PC([0, 𝑎]; 𝑋). That is, 𝐾
1
is Lipschitz with Lipschitz constant

𝑀𝐿.
Next, for every bounded subset 𝐵 ⊂ 𝑊, for any 𝜀 > 0,

there is a sequence {𝑢
𝑘
}
∞

𝑘=1
⊂ 𝐵 such that 𝛽(𝐾

2
𝐵(𝑡)) ≤

2𝛽({𝐾
2
𝑢
𝑘
(𝑡)}
∞

𝑘=1
) + 𝜀, for 𝑡 ∈ [0, 𝑎]. Since 𝐵 and 𝐾

2
𝐵 are

equicontinuous, we get from Lemmas 2 and 5 and (𝐻𝑓
3
) that

𝛽 (𝐾
2
𝐵 (𝑡))

≤ 2𝛽(∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, {𝑢
𝑘
(𝑠)}
∞

𝑘=1
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏) 𝑑𝑠) + 𝜀

≤ 4𝑁∫

𝑡

0

𝛽(𝑓(𝑠, {𝑢
𝑘
(𝑠)}
∞

𝑘=1
, ∫

𝑠

0

𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏))𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠)(𝛽 ({𝑢
𝑘
(𝑠)}
∞

𝑘=1
)+𝛽(∫

𝑠

0

𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏)

+ 𝛽(∫

𝑎

0

ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏))𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠)(𝛽 ({𝑢
𝑘
(𝑠)}
∞

𝑘=1
)+ 2∫

𝑠

0

𝛽 (𝑘 (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏)

+2∫

𝑎

0

𝛽 (ℎ (𝑠, 𝜏, {𝑢
𝑘
(𝜏)}
∞

𝑘=1
) 𝑑𝜏)) 𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠) (𝛽 ({𝑢
𝑘
(𝑠)}
∞

𝑘=1
)

+ 2(∫

𝑠

0

𝜂
1
(𝑠, 𝜏) 𝑑𝜏)𝛽 ({𝑢

𝑘
(𝑠)}
∞

𝑘=1
)
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+ 2(∫

𝑎

0

𝜂
2
(𝑠, 𝜏) 𝑑𝜏)𝛽 ({𝑢

𝑘
(𝑠)}
∞

𝑘=1
)) 𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑡

0

𝜂 (𝑠) (𝛽 ({𝑢
𝑘
(𝑠)}
∞

𝑘=1
) + 2

̂
𝑘
1
(𝑠) 𝛽 ({𝑢

𝑘
(𝑠)}
∞

𝑘=1
)

+ 2
̂
𝑘
2
(𝑠) 𝛽 ({𝑢

𝑘
(𝑠)}
∞

𝑘=1
)) 𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑎

0

𝜂 (𝑠) (𝛽PC ({𝑢𝑘}
∞

𝑘=1
) + 2

̂
𝑘
1
(𝑠) 𝛽PC ({𝑢𝑘}

∞

𝑘=1
)

+ 2
̂
𝑘
2
(𝑠) 𝛽PC ({𝑢𝑘}

∞

𝑘=1
)) 𝑑𝑠 + 𝜀

≤ 4𝑁∫

𝑎

0

𝜂 (𝑠) 𝛽PC (𝐵) (1 + 2
̂
𝑘
1
(𝑠) + 2

̂
𝑘
2
(𝑠)) 𝑑𝑠 + 𝜀

≤ 4𝑁𝑄∫

𝑎

0

𝜂 (𝑠) 𝑑𝑠𝛽PC (𝐵) + 𝜀,

(28)

for 𝑡 ∈ [0, 𝑎]. Since 𝜀 > 0 arbitrary, we have

𝛽PC (𝐾2𝐵) ≤ 4𝑁𝑄∫

𝑎

0

𝜂 (𝑠) 𝛽PC (𝐵) 𝑑𝑠, (29)

for any bounded subset 𝐵 ⊂ 𝑊.

𝛽 (𝐾
3
𝐵 (𝑡)) ≤ 2𝑁

𝑝

∑

𝑖=1

𝛽 (𝐼
𝑖
{𝑢
𝑘
(𝑡
𝑖
)}
∞

𝑘=1
)

≤ 2𝑁

𝑝

∑

𝑖=1

𝐿
𝑖
𝛽 ({𝑢
𝑘
(𝑡
𝑖
)}
∞

𝑘=1
)

𝛽PC (𝐾3𝐵) ≤ 2𝑁

𝑝

∑

𝑖=1

𝐿
𝑖
𝛽PC (𝐵) ,

(30)

for any subset 𝐵 ⊂ 𝑊; due to Lemma 2, (29), and (30), we
have

𝛽PC (𝐾𝐵)

= 𝛽PC (𝐾1𝐵) + 𝛽PC (𝐾2𝐵) + 𝛽PC (𝐾3𝐵)

≤ 𝑀𝐿𝛽PC (𝐵) +4𝑁𝑄∫

𝑎

0

𝜂 (𝑠) 𝛽PC (𝐵) 𝑑𝑠 + 2𝑁

𝑝

∑

𝑖=1

𝐿
𝑖
𝛽PC (𝐵)

≤ (𝑀𝐿 + 4𝑁𝑄∫

𝑎

0

𝜂 (𝑠) 𝑑𝑠 + 2𝑁

𝑝

∑

𝑖=1

𝐿
𝑖
)𝛽PC (𝐵) .

(31)

From (24), we know that 𝐾 is 𝛽PC-contraction on 𝑊. By
Lemma 3, there is a fixed point 𝑢 of 𝐾 in𝑊, which is a mild
solution of problem (1).

5. Classical Solutions

To study the classical solutions, let us recall the following
result.

Lemma 10. Assume that 𝑢
0

∈ 𝐷(𝐴), 𝑞
𝑖
∈ 𝐷(𝐴), 𝑖 =

1, 2, . . . , 𝑝, and that 𝑓 ∈ 𝐶
1
([0, 𝑎] × 𝑋,𝑋).

Then the impulsive differential equation

𝑢
󸀠

(𝑡) = 𝐴𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 𝑎] , 𝑡 ̸= 𝑡
𝑖

𝑢 (0) = 𝑢
0
,

Δ𝑢 (𝑡) = 𝑞
𝑖
, 𝑖 = 1, 2, . . . , 𝑝,

(32)

has a unique classical solution u(⋅)which satisfies, for 𝑡 ∈ [0, 𝑎],

𝑢 (𝑡)

= 𝑇 (𝑡) 𝑢 (0) = ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 + ∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝑞
𝑖
.

(33)

Now we make the following assumption.
(𝐻1) There exists a function 𝜂 ∈ 𝐿

1
(0, 𝑎; 𝑅

+
) such that for

any bounded𝐷 ⊂ 𝑋,

𝛽 (𝑓 (𝑡, 𝐷
1
, 𝐷
2
, 𝐷
3
)) ≤ 𝜂 (𝑡) (𝛽 (𝐷

1
) + 𝛽 (𝐷

2
) + 𝛽 (𝐷

3
)) ,

(34)

or a.e. 𝑡 ∈ [0, 𝑎] and for any bounded subset𝐷 ⊂ 𝑃𝐶([0, 𝑎], 𝑋).

Theorem 11. Let (𝐻1) be satisfied and 𝑢(⋅) a mild solution of
the problem (1). Assume that 𝑢(0) ∈ 𝐷(𝐴), 𝐼

𝑖
(𝑢(𝑡
𝑖
)) ∈ 𝐷(𝐴),

𝑖 = 1, 2, . . . , 𝑝 and that 𝑓 ∈ 𝐶
1
([0, 𝑎] × 𝑋,𝑋). Then u(0) gives

rise to a classical solution of the problem (1).
If 𝑢(⋅) is a uniquely determined mild solution, then it gives

rise to a unique classical solution.

Proof. We can define 𝑞
𝑖
= 𝐼
𝑖
(𝑢(𝑡
𝑖
)), 𝑖 = 1, 2, . . . , 𝑝.

From Lemma 10,

V󸀠 (𝑡) = 𝐴V (𝑡) + 𝑓(𝑡, V (𝑡) , ∫
𝑡

0

𝑘 (𝑡, 𝑠, V (𝑠)) 𝑑𝑠,

∫

𝑎

0

ℎ (𝑡, 𝑠, V (𝑠)) 𝑑𝑠) 𝑡 ∈ [0, 𝑎] , 𝑡 ̸= 𝑡
𝑖

V (0) = 𝑢
0
+ 𝑔 (𝑢) ,

ΔV (𝑡) = 𝑞
𝑖
, 𝑖 = 1, 2, . . . , 𝑝

(35)

has a unique classical solution V(⋅) which satisfies, for 𝑡 ∈

[0, 𝑎],

V (𝑡) = 𝑇 (𝑡) [𝑢
0
− 𝑔 (𝑢)]

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, V (𝑠) , ∫
𝑠

0

𝑘 (𝑠, 𝜏, V (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, V (𝜏)) 𝑑𝜏) 𝑑𝑠

+ ∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼
𝑖
(𝑢 (𝑡
𝑖
)) , 0 ≤ 𝑡 ≤ 𝑎.

(36)
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Now, 𝑢(⋅) is a mild solution of the problem (1), so that we get
for 𝑡 ∈ [0, 𝑎],

𝑢 (𝑡) = 𝑇 (𝑡) [𝑢
0
− 𝑔 (𝑢)]

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏) 𝑑𝑠

+ ∑

0<𝑡
𝑖
<𝑡

𝑇 (𝑡 − 𝑡
𝑖
) 𝐼
𝑖
(𝑢 (𝑡
𝑖
)) , 0 ≤ 𝑡 ≤ 𝑎.

(37)

Thus we get

V (𝑡) − 𝑢 (𝑡)

= ∫

𝑡

0

𝑇 (𝑡 − 𝑠) (𝑓(𝑠, V (𝑠) , ∫
𝑠

0

𝑘 (𝑠, 𝜏, V (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, V (𝜏)) 𝑑𝜏)

− 𝑓(𝑠, 𝑢 (𝑠) , ∫

𝑠

0

𝑘 (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏,

∫

𝑎

0

ℎ (𝑠, 𝜏, 𝑢 (𝜏)) 𝑑𝜏))𝑑𝑠,

(38)

which gives, by (𝐻
1
) and an application of Gronwall’s

inequality, ‖𝑢 − V‖PC = 0.
This implies that 𝑢(⋅) gives rise to a classical solution and

completes the proof.

6. Example

Let Ω be a bounded domain in 𝑅
𝑛
with smooth boundary

𝜕Ω, and 𝑋 = 𝐿
2
(Ω). Consider the following nonlinear

integrodifferential equation in𝑋:

𝜕𝑢 (𝑡, 𝑦)

𝜕𝑡

= Δ𝑢 (𝑡, 𝑦)

+

𝛾
1
𝑢 (𝑡, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
)

sin (𝑢 (𝑡, 𝑦))

+ ∫

𝑡

0

𝛾
2
𝑢 (𝑠, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
) (1 + 𝑠)

2
𝑑𝑠

+ ∫

𝑎

0

𝛾
3
𝑢 (𝑠, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
) (1 + 𝑠)

2
(1 + 𝑠

2
)
2
𝑑𝑠,

(39)

𝑢 (𝑡
+

𝑖
, 𝑦) − 𝑢 (𝑡

−

𝑖
, 𝑦) = 𝐼

𝑖
(𝑢 (𝑡
𝑖
, 𝑦)) , 𝑖 = 1, 2, . . . , 𝑝, (40)

with nonlocal conditions

𝑢 (0) = 𝑢
0
(𝑦) +∫

Ω

∫

𝑎

0

ℎ
1
(𝑡, 𝑦) log (1 + |𝑢 (𝑡, 𝑠)|1/2) 𝑑𝑡 𝑑𝑠,

𝑦 ∈ Ω,

(41)

or

𝑢 (0) = 𝑢
0
(𝑦) + 𝛾

4
𝑢 (𝑡, 𝑦) , 𝑦 ∈ Ω, (42)

where 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝛾
4
, ∈ 𝑅, ℎ

1
(𝑡, 𝑦) ∈ PC([0, 𝑎]; Ω). Set 𝐴 =

Δ,𝐷(𝐴) = 𝑊
2,2
(Ω)⋂𝑊

1,2

0
(Ω),

𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠, ∫

𝑎

0

ℎ (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠) (𝑦)

=

𝛾
1
𝑢 (𝑡, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
)

sin (𝑢 (𝑡, 𝑦))

+ ∫

𝑡

0

𝛾
2
𝑢 (𝑠, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
) (1 + 𝑠)

2
𝑑𝑠

+ ∫

𝑎

0

𝛾
3
𝑢 (𝑠, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
) (1 + 𝑠)

2
(1 + 𝑠

2
)
2
𝑑𝑠.

(43)

Define nonlocal conditions

𝑔 (𝑢) (𝑦)

= 𝑢
0
(𝑦) + ∫

Ω

∫

𝑎

0

ℎ
1
(𝑡, 𝑦) log (1 + |𝑢 (𝑡, 𝑠)|1/2) 𝑑𝑡 𝑑𝑠

(44)

or

𝑔 (𝑢) (𝑦) = 𝑢
0
(𝑦) + 𝛾

4
𝑢 (𝑡, 𝑦) . (45)

It is easy to see that 𝐴 generates a compact 𝐶
0
-semigroup in

𝑋, and
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑓(𝑡, 𝑢 (𝑡) , ∫

𝑡

0

𝑘 (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠, ∫

𝑎

0

ℎ (𝑡, 𝑠, 𝑢 (𝑠)) 𝑑𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤
󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨
(1, ‖𝑢‖ ,

󵄩
󵄩
󵄩
󵄩
𝑗
󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩
) ,

󵄨
󵄨
󵄨
󵄨
𝛾
󵄨
󵄨
󵄨
󵄨
= max {󵄨󵄨󵄨

󵄨
𝛾
1

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝛾
2

󵄨
󵄨
󵄨
󵄨
,
󵄨
󵄨
󵄨
󵄨
𝛾
3

󵄨
󵄨
󵄨
󵄨
} ,

(46)

where

𝑗 = ∫

𝑡

0

𝛾
2
𝑢 (𝑠, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
) (1 + 𝑠)

2
𝑑𝑠,

𝑘 (𝑡, 𝑠, 𝑢 (𝑠)) =

𝛾
2
𝑢 (𝑠, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
) (1 + 𝑠)

2
,

𝑞 = ∫

𝑎

0

𝛾
3
𝑢 (𝑠, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
) (1 + 𝑠)

2
(1 + 𝑠

2
)
2
𝑑𝑠,

ℎ (𝑡, 𝑠, 𝑢 (𝑠)) =

𝛾
3
𝑢 (𝑠, 𝑦)

(1 + 𝑡) (1 + 𝑡
2
) (1 + 𝑠)

2
(1 + 𝑠

2
)
2
,

(47)

and ‖𝑘(𝑡, 𝑠, 𝑢(𝑠))‖ ≤ |𝛾
2
|(1+‖𝑢‖), ‖ℎ(𝑡, 𝑠, 𝑢(𝑠))‖ ≤ |𝛾

3
|(1+‖𝑢‖),

‖𝐼
𝑖
(𝑢)‖ ≤ 𝑙

𝑖
(‖𝑢‖), 𝑖 = 1, 2, . . . , 𝑝.

For nonlocal conditions (44), ‖𝑔(𝑢)‖ ≤ 𝑎(mes(Ω))
max
𝑡∈[0,𝑎],𝑦∈Ω

|ℎ
1
(𝑡, 𝑦)|[‖𝑢‖ + (mes(Ω))1/2], 𝑢 ∈ PC([0, 𝑎]; 𝑋),

and 𝑔 is compact example of [18].
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For nonlocal conditions (45),

󵄩
󵄩
󵄩
󵄩
𝑔 (𝑢
1
) − 𝑔 (𝑢

2
)
󵄩
󵄩
󵄩
󵄩
≤
󵄨
󵄨
󵄨
󵄨
𝛾
4

󵄨
󵄨
󵄨
󵄨

󵄩
󵄩
󵄩
󵄩
𝑢
1
− 𝑢
2

󵄩
󵄩
󵄩
󵄩
. (48)

Hence, 𝑔 is Lipschitz. Furthermore, 𝛾
1
, 𝛾
2
, 𝛾
3
, 𝛾
4
and 𝑎 can be

chosen such that (24) is also satisfied. Obviously, it satisfies all
the assumptions given in our Theorem 9; the problem has at
least one mild solution in PC([0, 𝑎]; 𝐿2(Ω)).
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