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Abstract

This study deals with an optimal control problem subject to a stochas-
tic elliptic equation with Dirichlet boundary condition and in which the
state process is regular on a stochastic Hilbert space. We prove the ex-
istence and uniqueness of the optimal control and provide furthermore
necessary and sufficient optimality conditions. The optimal solution is
obtained in the case where there is no constraint. Our method is based
on variational theory of elliptic boundary problems in Hilbert spaces.
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1 Introduction

Optimal control problems are currently among major research topics in applied
mathematics, science engineering [1,2] and some related branches. Due to its
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enormous applications in diverse fields such as economics, finance, robotics,
engineering etc. [3], it is increasingly having a lot of impacts. Computational
methods both deterministic and stochastic optimal control governed by partial
differential equations(PDEs) have been investigated and are still challenging
[1,2,4,5].
In the previous study, [6] focused on some particular problems governed by
elliptic, parabolic and hyperbolic equations with boundary conditions. The
formulation of the control problem for deterministic case was established and
the conditions for obtaining a deterministic optimal control were given. The
Sobolev space is commonly used to carry out the solution of PDEs due to
its properties. Adopting the stochastic Sobolev space [2,7,8], the problems
governed by a random or stochastic elliptic equations have been solved and
it is still ongoing [1,2,4,9]. The motivations for solving these control prob-
lems subject to stochastic partial differential equations SPDEs are very huge ;
and mostly we may find difficult systems with noises and Dirichlet, Neumann
boundary condition [9,10].
The connection between the study of stochastic optimal control problems and
the Hamiltonian Jacobi Bellman (HJB) discussed in [9] allows one to obtain
the existence and uniqueness of the controllers but there is certain problem
where the noise being present on the boundary can sometimes make the prob-
lem very complicated to be solved.
In [11], the existence and uniqueness for non cooperative stochastic elliptic
equation with constraints were investigated where the set that characterizes
the boundary control was given. For the system which involves higher order
elliptic operator, the optimality conditions are derived in [12].

This paper is organized such that in section 2 we consider a stochastic opti-
mal control problem governed by an elliptic equation with noise and Dirichlet
condition with the state process being regular. We then proved the existence
and uniqueness of stochastic optimal control and derived the necessary and
sufficient condition in section 3. In section 4, a conclusion about this study is
given.

2 Preliminaries and the control problem

2.1 Notations and functional spaces

Let K be an open, convex and bounded domain in Rn(n = 2, 3) with boundary
∂K ⊂ Rn and B(K) be the Borel σ -field generated by the open subset of K.
Let (Ω,F ,P) be a complete probability space, where Ω is the sample space, F
is a σ -field and P the probability measure.
Let us introduce the stochastic Hilbert space L2(Ω;L2(K)) equiped with the
norm :



Optimal control governed by stochastic elliptic equations 735

‖u‖L2(Ω;L2(K)) =

(∫
Ω

∫
K

u2dxdP
) 1

2

(1)

where u is a stochastic function defined on K×Ω. In the same way, we consider
the following stochastic Hilbert space : L2(Ω;L2(∂K)) and L2(Ω;Hr(K)) with
r ≥ 0 [2,7,8].
Let us consider the following stochastic elliptic equation:

−∆y(x) = qW (x) + ψ(x), x ∈ K

y(x) = 0, x ∈ ∂K
(2)

where q ∈ R+, y(x) = y(x, ξ) ∈ L2(Ω;H1
0 (K)) is the state of variable process,

(x, ξ) ∈ K × Ω, and W (x) is a Wiener process and ψ a given function.
For the weak formulation of the stochastic elliptic equation we use the following
notation in [8].

a(y, z) =

∫
Ω

(∫
K

∇y(x)∇z(x)dx

)
dP (3)

and

l(z) =

∫
Ω

(∫
K

qW (x)z(x)dx

)
dP +

∫
Ω

(∫
K

ψ(x)z(x)dx

)
dP (4)

Proposition 2.1 The solution of equation (2) exists and is unique.

Proof
Take z ∈ L2(Ω;H1

0 (K)). By Green’s formula for stochastic elliptic equations
we get :

E
[∫

K

∇y(x)∇z(x)dx

]
= E

[∫
K

qW (x)z(x)dx

]
+ E

[∫
K

ψ(x)z(x)dx

]
(5)

where E is the expected value.
The variational problem associated to the equation is to find y ∈ L2(Ω;H1

0 (K))
such that a(y, z) = l(z). Then we have

a(y, z) = E
[∫

K

∇y(x)∇z(x)dx

]
(6)

L(z) = E
[∫

K

qW (x)z(x)dx

]
+ E

[∫
K

ψ(x)z(x)dx

]
(7)

We obtain :

β‖y‖2
L2(Ω;H1

0 (K) ≤ |a(y, y)| and |a(y, z)| ≤ ‖y‖L2(Ω;H1
0 (K))‖z‖L2(Ω;H1

0 (K)) (8)

|l(z)| ≤ α‖z‖L2(Ω;H1
0 (K)) (9)

where α and β are positive constants. Using Lax-Milgram theorem, from
inequalities (8) and (9), we deduce that the state process exists and is unique.



736 S.B. Affognon and P. Ngare and G. Degla

2.2 The stochastic optimal control problem

Let us consider the following control problem :

inf
u∈U

J(u) = inf
u∈U

E
[∫

∂K

(
∂y

∂η
(u)− ζd)2d(∂K) + γ

∫
K

u2dx

]
(10)

subject to :
−∆y(x, ξ) = qW (x) + ψ(x) + λu(x, ξ), x ∈ K, ξ ∈ Ω

y(x, ξ) = 0, x ∈ ∂K, ξ ∈ Ω
(11)

where ∂
∂η

denotes the normal derivative, with η the outwards unit normal

vector from K, ζd is a given element in L2(Ω;H
1
2 (∂K)), γ ∈ R∗+. The operator

∆ =
∑n

i=1
∂2

∂x2i
is the Laplace operator. J is the cost function, y : K×Ω −→ R

is the state process with ∂y
∂η
∈ L2(Ω;H

1
2 (∂K)), q is a positive constant, W :

K −→ R is a wiener process in the probability space (Ω,F ,R), ψ is a given
function, λ ∈ R∗+ , u : K × Ω −→ R is a stochastic control, U is a convex set
of admissible control given by :

U =
{
u ∈ L2(Ω;L2(K)) : u1(x) ≤ u(x) ≤ u2(x) ∀x ∈ K

}
(12)

where u1 and u2 belong to L2(Ω;L2(K))

In the sequel, we assume that the state process y belongs to L2(Ω;H2(K))

as it is for the deterministic case in [6] so that ∂y
∂η
∈ L2(Ω;H

1
2 (∂K)).

3 Results and Discussion

Let us consider the problem (10) subject to the system (11). We are going to
prove the existence and uniqueness of the stochastic optimal control and to
characterize the optimality conditions.
The cost function

J(u) = E
[∫

∂K

(
∂y

∂η
(u)− ζd)2d(∂K) + γ

∫
K

u2dx

]
(13)

can be rewritten as follows :

J(v) = Π(v, v)− 2L(v) + E
[∫

∂K

(φ(0)− ζd)2dσ

]
(14)
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where σ ∈ ∂K, φ = ∂y
∂η

and

Π(u, v) = E
[∫

∂K

(φ(u)− φ(0))(φ(v)− φ(0))dσ +

∫
K

γuvdx

]
(15)

L(v) = E
[∫

∂K

(ζd − φ(0))(φ(v)− φ(0))dσ

]
(16)

Remark 3.1 Π(v, v) is bilinear continuous on U × U and U-coercive.
Indeed, Π(v, v) ≥ γ‖v‖2

L2(Ω;L2(K)).

L(v) is linear continuous on U . Indeed, L(v) ≤ r0‖v‖U , where r0 ∈ R∗+
J is strictly convex. In fact Π is strictly convex. J is coercive that is
J(v) ≥ γ‖v‖2

L2(Ω;L2(K)) − r0‖v‖U + E
[∫
∂K

(ζd − φ(0))2dσ
]

Theorem 3.2 The stochastic control problem (10) has a unique solution.

Proof
Consider the cost functional :

J(v) = Π(v, v)− 2L(v) + E
[∫

∂K

(φ(0)− ζd)2dσ

]
(17)

Since E
[∫
∂K

(φ(0)− ζd)2dσ
]
≥ 0, from remark 3.1 and (11) there is a unique

optimal control u ∈ U such that J(u) = infv∈U J(v) according to Theorem 1.2
in [6].

Optimality conditions

We know that J is strictly convex. The map v 7→ Π(v, v) is continuous (Strong)
then strongly lower semicontinuous (l.s.c.)[13]. Since it is convex it is also
weakly l.s.c. Therefore J is l.s.c.

Lemma 3.3 The cost function (13) is Gâteaux differentiable on U and
∀v ∈ U ,

∇J(u).(v−u) = 2E
[∫

∂K

(φ(v)− φ(u))(φ(u)− ζd)dσ +

∫
K

γu(v − u)dx

]
(18)

Proof
It is well known that the operator A = −∆ is an isomorphism of H1

0 (K) to
H−1(K) [13,14], where H−1(K) is the dual space of H1

0 (K). Therefore we have
:

y(v)− y(u) = A−1λ(v − u) (19)

Now, let u and w be in U . We compute the following :
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limh→0+
J(u+ hw)− J(u)

h
(20)

J(u+ hw) = E
[∫

∂K

(φ(u+ hw)− ζd)2dσ +

∫
K

γ(u+ hw)2dx

]
= E

[∫
∂K

(φ(u) + h
∂

∂η
(λA−1w)− ζd)2dσ +

∫
K

γ(u2 + 2huw + h2w2)dx

]
= E

[∫
∂K

(φ(u) + h
∂

∂η
(λA−1w)− ζd)2dσ

]
+ E

[∫
K

γ(u2 + 2huw + h2w2)dx

]

J(u) = E
[∫

∂K

(φ(u)− ζd)2dσ +

∫
K

γu2dx

]
(21)

Then from above equalities, as h→ 0+, ∀u,w ∈ U

J ′(u).w = 2E
[∫

∂K

∂

∂η
(λA−1w)(φ(u)− ζd)dx+

∫
K

γ(uw)dx

]
(22)

By setting w = v − u, we get :

J ′(u).(v − u) = 2E
[∫

∂K

(φ(v)− φ(u))(φ(u)− ζd)dσ +

∫
K

γu(v − u)dx

]
(23)

Thus, J is Gâteaux differentiable and then we have :

E
[∫

∂K

(φ(v)− φ(u))(φ(u)− ζd)dσ +

∫
K

γu(v − u)dx

]
≥ 0 ∀u ∈ U (24)

Remark 3.4 u is an optimal control if and only if

E
[∫

∂K

(φ(v)− φ(u))(φ(u)− ζd)dσ +

∫
K

γu(v − u)dx

]
≥ 0 ∀u ∈ U (25)

Theorem 3.5 Consider the state process defined in (11) and the cost func-
tion defined in (13), the following is a necessary and sufficient condition for u
to be an optimal control :

−∆y(u) = qW + ψ + λu

∆ρ(u) = 0, ρ|∂K = −(φ(u)− ζd)

E
[∫
K

(λρ+ γu)(v − u)dx
]
≥ 0, ∀v ∈ U

(26)
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Proof
By introducing the adjoint state ρ such that :

∆ρ = 0

ρ|∂K = −(φ(u)− ζd)
(27)

as it is well justified in [6]. By using Green’s Formula, we get the following
equality:

E
[∫

K

ρ(u)∆κdx

]
= E

[∫
∂K

(φ(u)− ζd)
∂κ

∂η
dσ

]
∀κ ∈ L2(Ω;H2(K) ∩H1

0 (K))

(28)
Therefore, replacing κ by y(v)− y(u), we obtain:

E
[∫

K

λρ(u)(v − u)dx

]
= E

[∫
∂K

(φ(v)− φ(u))(φ(u)− ζd)dσ
]

(29)

Accordingly, from (25) we obtain the following inequality :

E
[∫

K

(λρ(u) + γu)(v − u)dx

]
≥ 0 ∀u ∈ U (30)

Remark 3.6 In the case where there is no constraint on the space control,
we obtain :

λρ+ γu = 0 (31)

Then we get :

u = −λρ
γ

(32)

Therefore, we obtain the following system:
−∆y + λ2 ρ

γ
= qW + ψ in K, y = 0 on ∂K

∆ρ = 0, ρ|∂K = −(φ(u)− ζd)
(33)

Discussion

The optimal control is determined in the case where there is no constraint but
it can be also determined in the case of positive cone as well. The fact that
the state process is regular enables to choose the observation function on the
stochastic fractional Sobolev space. However it is not generally true that the
solution of the control problem is regular when the state is regular. It must
have in addition other conditions for it.
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4 Conclusion

In this paper, we treated a control problem governed by stochastic elliptic
equations which involves stochastic Hilbert spaces. The solution of the con-
sidered control problem exists and is unique. It is expressed in terms of the
adjoint state in the case without any constraint.
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