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A B S T R A C T   

Tropical fish stocks are perceived not to exhibit seasonality in growth. For this reason the standard von Berta
lanffy growth function (VBGF) has been used widely to fit the growth of tropical fish populations compared to the 
seasonally-oscillating VBGF (soVBGF), which is seldom used in tropical fisheries. To advocate for the use of the 
soVBGF in assessment of tropical fish stocks, this study compared the outputs of the two methods using ELE
FAN_GA_boot on oysters from the Densu Delta, Ghana. Sampling of mangrove oyster, Crassostrea tulipa covered a 
period of 12 months and the data were analysed for VBGF growth parameters and its prediction models. The 
intensity of growth oscillation showed that C. tulipa exhibited seasonal growth (C = 0.50), and the soVBGF fitted 
the growth of the oyster better than the standard VBGF method. Estimates of some of the stock parameters (t50, 
tmax, Fcur, Ecur and Ycur) were comparatively higher for the standard VBGF than the soVBGF approach. In both 
approaches, the oysters were underexploited (Ecur < Emsy). However, unlike the soVBGF method where Fcur < F0.5, 
the standard method indicated that Fcur > F0.5. In view of the disparities, studies which adopt standard VBGF on 
tropical stocks that exhibit seasonality would likely generate comparatively higher outputs for relevant biological 
reference points, which may ultimately mislead management decisions. Given the sedentary nature of oysters 
which could render the organisms more susceptible to seasonal variations in environmental conditions to show 
seasonality as observed in this study, we recommend further works on tropical shell- and finfishes to corroborate 
the current findings or otherwise.   

1. Introduction 

Stock assessment remains a key component of rational fisheries 
management. It is usually carried out to ascertain the levels of exploi
tation of fish stocks, stock size and to predict future yields based on 
certain fishing mortalities (King, 2007). Management measures 
emanating from stock assessments are ultimately focused on ensuring 
optimal yields for both biological and economic sustainability. Such 
assessments hinge on catch, age and length-based approaches through 
either fishery dependent or fishery independent surveys (Gayanilo et al., 
2005; King, 2007; Pauly, 1983). 

In the tropics, length-based procedures have been extensively used in 
the assessments of fish stocks compared to age data. The preference for 
length data is primarily due to the reported difficulty in ageing tropical 
fish, coupled with the ease with which length-based data are acquired 

(Ofori-Danson and Kwarfo-Apegyah, 2008; Pauly, 1984). This situation 
has engendered the development of many mathematical models, which 
utilise length related data for the estimation of growth and mortality 
parameters (Gayanilo et al., 2005; Pauly and David, 1981). 

The development of standard von Bertalanffy Growth Function 
(VBGF) and seasonally-oscillating VBGF among others (like the 
Richards, Logistic and Gompertz models) make it possible to estimate 
population parameters such as asymptotic length (L∞) and growth co
efficient (K) under different conditions (Gayanilo et al., 1989; Sparre 
and Venema, 1992). These parameters are computed by the progression 
of length-frequency modes over time (Pauly et al., 1992; Urban, 2002). 
The standard (special) VBGF is the original growth model by von Ber
talanffy while the other forms were developed later to tackle particular 
needs. The seasonally-oscillating VBGF, also referred to as the season
alised VBGF, has been used widely to fit the growth of fish populations 
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from the temperate regions (Dridi et al., 2007; Tsikliras et al., 2005). 
FiSAT II programme has been used in the analysis of several fisheries 

around the globe since its introduction by Pauly and David (1981). 
Lately, Pauly and Greenberg (2013) incorporated ELEFAN I into the R 
software developed by the R Core Team (2019). This innovation led to 
the development of R-based packages for fish stock assessment, namely 
TropFishR (Mildenberger, 2019; Mildenberger et al., 2017), fishmethods 
and fishboot, among others. 

The growth of many organisms is said to be seasonal, which has been 
attributed to variations in temperature, light, and food availability 
(García-Berthou et al., 2012). Henderson (2006), however, noted that 
based on the lack of distinct seasonal temperature variations in the 
tropics, it has been presumed that tropical fishes lack seasonal growth. 
Hence, the standard VBGF is much utilised in fitting growth data of fish 
populations in the tropics (Pauly, 1984; Sparre and Venema, 1992). 
However, Morales-Nin and Panfili (2005) recommended that season
ality should be factored in tropical fish stock analysis, even though 
seasonality is not as well-defined as in the temperate and Polar Regions 
(Fischer et al., 1988; Fowler, 1995). 

Despite the general knowledge that fish species exhibit seasonal 
growth as triggered by some seasonally changing environmental factors, 
most fish stock assessments carried out in the tropics fail to incorporate 
seasonality in the studies, partly because of the long-held perception 
that tropical fish species display a uniform growth pattern. Moreover, 
Longhurst and Pauly (1987) and Pauly and Ingles (1981) reported that a 
‘winter-summer’ temperature change as low as 2 ◦C results in a signif
icant seasonal growth oscillations in tropical fishes. 

Consequently, it is imperative for researchers assessing tropical fish 
stocks to consider employing the seasonalised approach. Therefore, this 
study comparatively examines the standard VBGF and soVBGF outputs 
as well as its management implications using an oyster population in the 
Densu Delta, Ghana, as a test case, and advocates for the use of the latter 
in assessing tropical fish stocks. 

The West African mangrove oyster, Crassostrea tulipa (Lamarck, 

1819) offers an economical source of protein, employment and alter
native livelihood for a significant number of coastal communities in 
Ghana (Asare et al., 2019; Osei et al., 2020, 2021; Yankson, 1990) and 
the West African region as a whole (Ajana, 1980; Ansa and Bashir, 
2007). Globally, oyster production, though promising, is burdened with 
regulatory issues among others, according to Botta et al. (2020). Hence, 
for a rational exploitation, the fisheries must be regulated through sound 
analytical approaches. In view of their sessile nature, oysters offer a 
good candidature for the assessment of seasonality in tropical fish stocks 
as they remain vulnerable to the impact of varying environmental 
changes. 

2. Materials and methods 

2.1. Study area 

The oyster samples were obtained from the Densu Delta, a designated 
Ramsar site in Ghana which lies between longitudes 0◦ 16’W–0◦ 21’W 
and latitudes 5◦ 30’N–5◦ 33’N. The Delta is formed by the Densu River, 
which is dammed at Weija to supply potable water to parts of the Greater 
Accra Region and empties into the Gulf of Guinea. The dam is occa
sionally opened to safeguard the facility from potential damage from 
heavy rainfall. The oyster population is distributed in patches along the 
arm of the Delta, which lies parallel to the shoreline (Fig. 1). Three main 
patches of oyster beds exist at the shallow portion (about 0.61 m deep at 
high tide, labelled as 1, 2 and 3 in Fig. 1) and another at the deep part 
(about 2.13 m at high tide, labelled 4). Samples for this study were 
obtained from the deep area, where oysters are available year-round 
(Osei, 2020; Osei et al., 2020). The oysters settle on hard substrates, 
mainly on oyster shells as well as directly on the sandy-mud substratum. 

2.2. Sampling and morphometric data collection 

Oysters were sampled randomly using a 0.25 m2 quadrat around the 

Fig. 1. Study site showing the Densu Delta, sampling site and oyster sub-populations.  
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middle of each month from November 2017 to October 2018 by diving 
at study site 4 in the Densu Delta during the lowest daytime tide (Fig. 1). 
The samples were obtained by three replicate throws (i.e., by dropping 
an aluminium quadrat on oyster beds) at an interval of about 20 m be
tween sampling spots at the bottom of the water body. Between 70 and 
110 oyster specimens were obtained per month. The samples were 
transported to the laboratory where clustered individuals were sepa
rated, cleaned of fouling organisms, and debris removed by brushing 
and washing. Oyster shell height (the maximum distance from the hinge 
to the ventral margin) in cm was taken with a pair of dividers in 
conjunction with a rule. The shell height was used for the length based 
analysis because it has been reported to be the best predictor of soft 
tissue biomass in oysters (Edwards, 2014; Osei, 2020). Total weight of 
each specimen was taken to the nearest 0.01 g using an electronic 
balance. 

2.3. Data analyses 

The shell height data for 12 months were pooled to construct a size- 
frequency distribution histogram. Shell height (SH, cm) and total weight 
(TW, g) relationship was determined by log-transforming the equation, 
TW = a(SH)b (Le Cren, 1951) into its linear form, Log TW = Log a + b 
Log SH, where ‘a’ and ‘b’ are the intercept and slope, respectively. The 
deviation of the gradient from the isometric value (b = 3) was analysed 
using a t-test as expressed by the following equation: Ts = (b – ß)/S.E 
where Ts is the t-test value, b is the growth coefficient, ß is the isometric 
value and S.E is the standard error of the slope (Kandeel et al., 2013). 

Apart from the base packages in the R software (R Core Team, 2019), 
the packages used in analysing the monthly oyster shell height data were 
TropFishR (Mildenberger et al., 2017; Taylor and Mildenberger, 2017), 
fishmethods (Nelson, 2018), fishboot (Schwamborn et al., 2018), dev
tools (Wickham et al., 2018) and ks (Duong, 2019). The TropFishR was 
used to assess the oyster fishery. 

2.4. Growth parameters 

Growth was modelled separately by the standard VBGF, given as SHt 
= SH∞ [1 − (exp− K (t − tₒ))] (von Bertalanffy, 1938) and the soVBGF 
presented as SHt = SH∞ [1 − (exp − K (t − tₒ) + s(t) − s(tₒ))] by Somers 

Fig. 2. Size-frequency distribution of deep water Crassostrea tulipa population 
in the Densu Delta, Ghana. 

Fig. 3. Shell height-total weight relationship of deep water Crassostrea tulipa 
population in the Densu Delta, Ghana. 

Fig. 4. Restructured monthly shell height-frequency distributions of Crassostrea tulipa population in the Densu Delta fitted with the seasonalised VBGF and standard 
VBGF, Ghana. 

I.K. Osei et al.                                                                                                                                                                                                                                   



Fisheries Research 244 (2021) 106118

4

(1988), where SHt is the oyster shell height at-age t, SH∞ is the 
asymptotic shell height, K is the growth coefficient and to the theoretical 
age at length zero (now tanchor). Also, s(t) = (CK/2π) sin 2π (t - ts), where 
C is the intensity of the sinusoidal oscillation, which normally ranges 
from 0 to 1 (C value greater than 1 suggests periods of shrinkage in size 
dimension), and summer point (ts) is the fraction of a year, relative to the 
age of recruitment where the sine wave oscillation begins. The SH∞, K, 
C, Φ’ (growth performance index) and tanchor (i.e. the portion of year 
where annually repeating growth curves cross length equal to zero) were 
determined by modal progression analysis using the ELEFAN_GA full 
bootstrap approach (Mildenberger, 2019; Schwamborn et al., 2019; 
Scrucca, 2013) in the TropFishR package. The full bootstrap approach 
was used due to some of the low monthly sample sizes. The settings for 
the ELEFAN_GA_boot algorithms for both the standard and soVBGF were 
popSize = 100, maxiter = 50, run 10, pmutation = 0.2 and Bootstrap 
runs/nresamp = 1000 (Mildenberger et al., 2017). Also, the ‘moving 
averages’ (MA) and fixing of L∞ were held constant for both approaches, 
to avoid parameter estimation error (Taylor and Mildenberger, 2017). 

The growth performance index (Φ’) given by Pauly and Munro (1984) 
was estimated using the equation: Φ’ = Log10 K + 2 Log10 L∞. The to 
value according to Pauly (1979) was calculated as: Log10 (to) = 0.392 – 
0.275Log10 L∞ – 1.038 Log10 K. Longevity (tmax) of the oyster population 
was estimated according to Pauly (1984) equation given as tmax = 3/K. 

2.5. Mortality, exploitation rates, and yield/biomass per recruit 

The total mortality (Z) of the oyster population was estimated by the 
length converted catch curve (Pauly, 1983; Munro, 1984) while the 
instantaneous natural mortality (M) was estimated from Pauly (1980) 
empirical equation: log10 M = − 0.0066 − 0.279 log10 L∞ 
+ 0.6543 log10 K + 0.4634 log10 T (with inputs from the growth pa
rameters), where T is the mean annual water temperature (a mean of 27 
◦C was estimated during the study). The water temperature was 
measured in three replicates using a water quality checker (HORIBA, 
Model U-5000) on monthly basis and the mean resolved. Fishing mor
tality (F) was obtained from the relationship: F = Z – M (Gulland, 1971). 

Fig. 5. Scatter histogram of ELEFAN_GA_boot (a) with and (b) without seasonality of deep water Crassostrea tulipa from the Densu Delta, Ghana. The dots denote the 
individual combinations of L∞ and K estimates per resampled length-frequency catch data, while the contours and colour intensity signify the density of the 
combinations. The peripheral histograms show univariate density for both growth parameters. 
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The level of exploitation (E) of the oyster fishery was calculated by the 
equation: E = F/Z (Gulland, 1969). 

The relative yield per recruit (YPR) and relative biomass per recruit 
(BPR) were estimated using the growth and mortality parameters to 
construct the Thompson and Bell model (Sparre and Venema, 1992). The 
model was used because of its non-steady condition predictions, which is 
necessitated by the occasional harsh conditions in the Densu Delta. The 
Thompson and Bell model illustrates the current fishing mortality (Fcur), 
fishing mortality at which 50% of the virgin biomass is exploited (F0.5), 

the fishing mortality that gives the maximum sustainable yield (Fmsy), as 
well as exploring the impact of the various t50 (mean oyster age at first 
capture) values and fishing mortality on YPR. 

3. Results 

3.1. Size-frequency distribution 

A total of 802 specimens of C. tulipa were sampled from the deep 
portion of the Densu Delta. As seen in Fig. 2, the size distribution was 
unimodal, and ranged from 2.0 to 14.6 cm SH with a modal class of 
4.0–4.9 cm SH. 

3.2. Size-weight relationship 

The total weight of the oyster specimens ranged from 1.78 to 
176.22 g, with a mean weight of 30.64 ± 1.14 (SE) g. The shell height- 
total weight relationship of the C. tulipa population was described by 
equation Log10 TW = 2.5425Log10 SH - 0.6926 (Fig. 3). The figure in
dicates that there was a strong correlation and a significant relationship 
between shell height and total weight of the oysters (r = 0.90, 
p < 0.001). The gradient of the equation (b = 2.54, SE 0.045) was 
significantly different (p < 0.001; t = 56.81) from 3, indicating negative 
allometry. 

3.3. Growth parameters 

The monthly restructured size-frequency distributions of C. tulipa 
fitted with growth curves using the seasonalised VBGF and standard 
VBGF showed that in both approaches, the mode (6.0–6.9 cm SH) in 
November 2017 shifted by 1 cm SH in December 2017 as well as in 
January 2018 (Fig. 4). Subsequently, the samples did not show any 
clear-cut modal progression. However, comparatively, the growth 
curves fitted more modes in the soVBGF than the standard VBGF 
method, indicating that the former fits the modal classes better. 

The growth parameters as estimated from the maximum density of 
ELEFAN_GA_boot using the soVBGF (L∞ = 16.97 cm SH; K = 0.30 yr− 1; 
tanchor = 0.47) and standard VBGF (L∞ = 16.86 cm SH; K = 0.44 yr− 1; 
tanchor = 0.44) were comparable ( Figs. 5–7). However, the intensity of 
growth oscillation (C) of 0.50 in the soVBGF approach suggests sea
sonality in the growth of the oysters and the summer point (ts) was 
estimated as 0.18 (February) as seen in Fig. 6. 

3.4. Mortality parameters and exploitation rates 

The total mortality, Z and age at first capture, t50 estimated for the 
oysters with the soVBGF were 1.92 ± 0.08 yr− 1 and 0.55 yr, respec
tively while the respective outputs from standard VBGF were 
1.92 ± 0.09 yr− 1 and 0.65 yr, showing comparable Z for both methods 
but higher t50 for the latter (Fig. 8). 

The natural mortality (M) and fishing mortality (F), exploitation rate 
(E) and longevity (tmax) as obtained with the seasonalised and standard 
VBGF approaches are shown in Table 1. Generally, the estimates showed 
inconsistencies in the outputs of the two methods, with F, E and tmax 
being higher, and M being lower for the standard VBGF. 

3.5. Thompson-Bell model 

Like t50 and tmax, the Fcur was higher in the standard VBGF estimates 
(0.72) than the seasonalised method (0.56) as shown in the yield per 
recruit (YPR) and biomass per recruit (BPR) analyses (Fig. 9). 
Comparing the F0.5 and its corresponding Fcur in each method, the Fcur 
was higher than the F0.5 for the standard approach, whereas the sea
sonalised approach presented a lower Fcur than the F0.5. Other parame
ters such as Ecur and Ycur were similarly higher for the standard approach 
than seasonalised method which possibly influenced the Bcur values (see 

Fig. 6. Seasonalised VBGF growth curve plot of deep water Crassostrea tulipa 
samples from the Densu Delta, Ghana using an ELEFAN_GA_boot, Linf =
Asymptotic length (L∞). Sinusoidal growth curve represents the maximum 
density peak (thick black line) of the kernel density distribution with its 95% 
confidence contours (black dashed lines) and the individual sinusoidal curves 
(grey lines). 

Fig. 7. Standard von Bertalanffy Growth Function (VBGF) plot of deep water 
Crassostrea tulipa samples from the Densu Delta, Ghana using an ELE
FAN_GA_boot, Linf = Asymptotic length (L∞). Growth curve represents the 
maximum density peak (thick black line) of the kernel density distribution with 
its 95% confidence contours (black dashed lines) and the individual curves 
(grey lines). 
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Table 2). 

4. Discussion 

The intensity of growth oscillation (C) is an important parameter 
used in stock assessment for quantification of growth seasonality in fish 
populations (Abobi et al., 2019; García-Berthou et al., 2012). According 
to Pauly (1984) and Henderson (2006), intensity of growth oscillation of 
1 indicates that growth doubles during ‘summer’ (i.e. increases by 
100%) and becomes zero at ‘winter’. A C value of 0.50 primarily in
dicates that growth increases by 50% during ‘summer’ and decreases by 
50% in ‘winter’. The estimated C of 0.50 for the oyster population in the 
present study (Fig. 6) indicated seasonality in growth of the organisms, 
suggesting the need for consideration of seasonality in the assessment of 
tropical fish stocks. This buttresses Pauly (1990) assertion that growth 
models that do not incorporate seasonal oscillations fail to capture a 
crucial phase of the growth process, even for tropical fish. Seasonality in 
growth of tropical fish, according to reports, is imposed by seasonal 

variations in rainfall (Henderson, 2006) and temperature (Longhurst 
and Pauly, 1987; Pauly and Ingles, 1981). In the present study, the 
annual rainy and dry season with its attendant changes in temperature 
could explain the seasonality observed in the oyster population. 

The colour intensity and its courage of the scatter distribution of L∞ 
and K indicating the density of the dots (thus the individual combina
tions of the growth parameters) is higher in the seasonalised approach 
than the standard method (Fig. 5). The observation suggests a better 
estimation of the growth parameters in the seasonalised method. In the 
tropics, on the general Crassostrea species as seen in Table 3 exhibited 
higher asymptotic lengths (L∞) as compared to the temperate regions 
and seemingly vice versa for the growth coefficient (K). 

Results of this study have shown that estimates of some of the stock 
parameters (t50, tmax, Fcur, Ecur and Ycur) were comparatively higher for 
the standard VBGF than the seasonalised approach. Such higher esti
mates could potentially mislead the biological significance of the values, 
especially in the context of tropical fish stocks where marked seasonality 
is presumed not to occur, hence, its omission in the assessment of stocks. 
For example, the observed higher Ycur value from the standard VBGF 
indicates increased yield than the output from the seasonalised method. 
Not only could these disparities in outputs biologically mislead the 
assessment outcomes, but may have the overarching tendency to 
misinform management decisions. 

In the case of the current oyster population, the application of 
Thompson and Bell model’s YPR and BPR showed that the stock was 
underexploited as the Fmsy was greater than Fcur in both methods (Fig. 9). 
However, the Fcur was higher than the F0.5 for the standard VBGF, 
whereas the seasonalised method had a lower Fcur than the F0.5. In the 
scenario of a management objective that sets its biological reference 
point to F0.5 rather than Fmsy, the outputs of the standard VBGF would 

Fig. 8. Length-converted catch curve of deep water Crassostrea tulipa samples from the Densu Delta, Ghana indicating the values of total mortality (Z) and mean age 
at first capture (t50) for seasonalised and standard methods. 

Table 1 
Mortality and exploitation parameters of Crassostrea tulipa in the Densu Delta, 
Ghana with and without seasonality.   

Input 

Seasonalised VBGF Standard VBGF 

Natural mortality (M) yr− 1  1.36  1.20 
Fishing mortality (F) yr− 1  0.56  0.72 
Exploitation rate (E)  0.31  0.37 
Longevity (tmax) yrs  6.38  6.82  
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lead management to reduce the fishing effort whereas the soVBGF out
puts suggest sustainable exploitation. A misled management decision 
which seeks a reduction in fishing effort on a stock that is not necessarily 
exploited beyond the biological reference point, as in the case of the 
Densu oysters, could potentially affect the optimal exploitation of the 
resource (essentially, yield and income) for livelihood sustainability. 
The use of appropriate method is therefore critical in the assessment of 
this tropical oyster stock. 

5. Conclusion 

In conclusion, contrary to the long-held perception that tropical fish 
populations do not clearly exhibit seasonality in growth, the C. tulipa 
population at the Densu Delta in Ghana, a tropical region, showed sea
sonality in its growth (C = 0.50). To buttress the observation on sea
sonality, the soVBGF procedure fitted the growth of the oyster better 
than the standard VBGF method. Studies that adopt the use of the 
standard method on tropical stocks that undergo seasonality in growth 
would likely generate comparatively higher outputs for some stock pa
rameters (t50, tmax, Fcur, Ecur and Ycur) as obtained in the present study. 
Pertinently, the standard method could overestimate the relevant bio
logical parameters and their consequent reference points, which may 
ultimately mislead management decisions. Given that oysters are 
sedentary organisms and may be more susceptible to seasonal variations 
in environmental conditions which possibly contributed to the observed 
seasonality in this study, we recommend further research on tropical 
shell- and finfishes (including nektonic shellfishes) using both size and 
age-based models to corroborate the current findings or otherwise. 
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