
Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740
Contents lists available at ScienceDirect

Journal of King Saud University –
Computer and Information Sciences

journal homepage: www.sciencedirect .com
Formal verification of a peer-to-peer streaming protocol
https://doi.org/10.1016/j.jksuci.2018.08.008
1319-1578/� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

⇑ Corresponding author.
E-mail addresses: ojoeo@funaab.edu.ng (O.E. Ojo), aoluwato@oauife.edu.ng

(A.O. Oluwatope), sajadi@oauife.edu.ng (S.O. Ajadi).
Oluwafolake E. Ojo a,⇑, Ayodeji O. Oluwatope b, Suraju O. Ajadi c

aDepartment of Computer Science, Federal University of Agriculture, Abeokuta, Nigeria
bDepartment of Computer Science and Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria
cDepartment of Mathematics, Obafemi Awolowo University, Ile-Ife, Nigeria
a r t i c l e i n f o

Article history:
Received 3 May 2018
Revised 4 August 2018
Accepted 15 August 2018
Available online 25 August 2018

Keywords:
Peer-to-peer networks
Video streaming and temporal logic
a b s t r a c t

Peer (P2P) networks have emerged as an efficient and affordable means of transmitting videos to numer-
ous end-users via the Internet. The dynamic and heterogeneous nature of P2P streaming systems (P2PSS)
makes testing, analyzing and verification a cumbersome task. However, formal methods offer efficient
approaches to rigorously analyze and verify P2PSS. This paper demonstrates the use of formal verification
techniques for analyzing the behavioral properties of P2PSS.We use temporal logics to analyze whether all
the possible behaviors within the P2P streaming systems conform to the defined specifications.
Specifically, we apply model checking to check the consistency, completeness and certainty of the model
if the temporal properties of the proposed system satisfies the required specifications. Furthermore, the
P2PSS framework was modeled and verified using Simulink Design Verifier (SDV) in MATLAB simulation
tool. The simulations results showed 100% validation for all frames and 50% validation for I-frames priori-
tisation. Further, the probability of a peer capable of forwarding frames while receiving is at most 0.5.
� 2018 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction Rejaie, 2009). Peers in typical P2P scenarios receive contents and
The Internet streaming technology suffices as an excellent sub-
stitute for broadcasting cable and satellite television contents in a
more flexible manner (Xiao and Ye, 2008) and the fusion of P2P
approach into this technology has emerged as a propitious tool
for video streaming applications (Ullah et al., 2012b). Diverse P2P
systems have been designed for file sharing, data dissemination
and audio/video streaming which occupy substantial part of global
Internet traffic (Brienza et al., 2016). In P2P streaming paradigm,
multiple media channels are easily transmitted to numerous users
concurrently, thereby, attracting millions of viewers daily (Shen
et al., 2015).

The achievement of P2PSS is hinged on peer’s ability to stream
without a centralized server (Wallach, 2003), by pushing complex-
ity from the network to users (peers), which in turn relieves the
burden of bandwidth cost on the servers (Alessandria et al.,
2011). P2PSS leverages the cooperation among peers, guaranteeing
the service of video requests with increased scalability, reduced
cost and ease of deployment (Merani and Natali, 2016) without
sacrificing the quality of the stream and user experience of all
peers in the network (Naiem and El-Beltagy, 2016; Magharei and
easily distribute it to neighboring peers (Ullah et al., 2013). How-
ever, intermittent joining of peers or flash crowd situations
(Ullah et al., 2012a; Chen et al., 2014) pose a challenge related to
rendering quality of service for effective live streaming services.
The effectiveness of these applications depends largely on peers’
behavior and cooperation (Gonçalves et al., 2016).

Testing and analyzing peers’ behaviors and cooperation is
another difficult and cumbersome task, due to often large scale
and heterogeneous nature of the P2P systems (Sandvik and Sere,
2011). A well-known alternative to simulation and testing is the
use of formal verification technique, called model checking
(Clarke et al., 1999). Formal methods provide an efficient way for
formal verification of P2P systems (Gomes et al., 2012). Model
checking is the formal process through which a desired behavioral
property (the specifications) is verified to hold for a given model
via an exhaustive enumeration, either explicit or symbolic
(Rozier, 2011).

In model checking, the specification is expressed in temporal
logic and the system is modeled as a finite state machine (Biere
et al., 1999). Temporal logics allow the specification of the system
behavior in terms of logical formulas, including temporal con-
straints, events, and the relationships between them (Bellini
et al., 2000). Failure of the model to satisfy a desired property of
the system indicates either that the model does not accurately
represent the behaviors of the system, or the existence of some
error(s) in the system modelling (Miller et al., 2006).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2018.08.008&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jksuci.2018.08.008
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ojoeo@funaab.edu.ng
mailto: aoluwato@oauife.edu.ng
mailto:sajadi@oauife.edu.ng
https://doi.org/10.1016/j.jksuci.2018.08.008
http://www.sciencedirect.com/science/journal/13191578
http://www.sciencedirect.com

O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740 731
In recent decades, model checking plays a key role in system
analysis and verification. For example, model checking was suc-
cessfully applied in hardware verification (Clarke et al., 2003),
specification and verification of security models, protocols and
properties (Dixon et al., 2007; Basin et al., 2011). In addition, model
checking was applied to check whether temporal properties are
satisfied on all the possible behaviors of robotic swarms (Dixon
et al., 2012) and security testing of web-based applications in
which test cases were automatically derived from counter
examples found through model checking (Armando et al., 2010).
Furthermore, a new approach to model checking in security-
sensitive business processes was designed in Armando and Ponta
(2009). This approach allows separate specification of the work
flow and the associated security policy while it retains the ability
to carry out a fully automatic analysis of the process.

Datta et al., 2007 presented a protocol composition logic for
proving security properties of network protocols that use public
and symmetric key cryptography. The analysis of genetic regula-
tory networks under parameter uncertainty, using discrete
abstractions and model checking was given in Batt et al. (2008).

Liu et al., 2013 proved that the discrete synthesis problem for an
over-approximation can be recast as a two-player temporal logic
game and off-the-shelf software can be used to solve the resulting
problem.

Davies, 2017 examined the basic relationship between temporal
logic and languages that involve multiple stages. The integration of
linear temporal logic within the framework of ontological physics-
based motion was also designed, it provided robustness and auton-
omy for handling complex temporal goals in a more realistic way
(Akbari and Rosell, 2017).

Leveraging on the application of model checking and temporal
logic for various system analysis and verification, we applied
model checking to a P2P streaming protocol named UStream
(Ojo et al., 2015) in order to test whether the temporal properties
are satisfied on all the possible behaviors within the system.
Although, the dynamic analysis of UStream was presented in Ojo
et al. (2017), this paper further analyzed and verified the scheme
with an attempt to check for the consistency and completeness.
The other parts of the paper are organized as thus: Section 2
provides background information on video coding technology.
Section 3 discusses existing video streaming protocols. Section 4
presents UStream protocol overview and the model specifications
for each state transition in UStream protocol. Section 5 verifies
and validates the behavior of all the steps involved in UStream pro-
tocol. Section 6 analyses the generated results and Section 7 con-
cludes this paper and discusses potential future direction.
Fig. 1. Chronology of video coding stand
2. Video coding technology

The main objective of most digital video coding standards is
to optimize coding efficiency (Ohm et al., 2012; Barekatain
et al., 2013; Barekatain et al., 2015). The most popular organiza-
tions that have predominated video compression standardization
are International Telecommunications Union – Telecommunica-
tions Standardization Sector (ITU-T) and International Standard-
ization Organisation and International Electro-technical
Commission (ISO/IEC). ITU-T concentrated on telecommunication
applications and has produced the H.26x standards while ISO/IEC
is more focused on consumer applications and has defined the
Joint Photographic Experts Group (JPEG) standards and the Mov-
ing Picture Experts Group (MPEG) standards (Golston, 2004;
Sullivan, 2005). The chronology of video coding standard is given
in Fig. 1.

In video compression, classifying frames of a video file into
groups of pictures (GoP) is essential in achieving high compression
ratio (Le et al., 2017). A video picture is usually split up into
sequences of consecutive similar/closely related pictures (Haskell
and Puri, 2012). MPEG-2 standard introduced three kinds of frame
types: intra-coded frame (I-frame), predictive frame (P-frame) and
bi-predictive frame (B-frame) (Jiang et al., 2011; Yao et al., 2017).
These frame types were also extended to subsequent coding stan-
dards. Generally, the first image in a video sequence is invariably
an I-frame. I-frames are coded using only intra-frame prediction
and these frames are used as references for the P-frame and B-
frame prediction (Zatt et al., 2010; Ghaeini et al., 2013; Ghaeini
and Akbari, 2014; Ghaeini et al., 2016). I-frames are required as
starting or resynchronization points. They are also used to imple-
ment fast-forward, rewind and other random access functions.
An encoder will automatically insert I-frames at regular intervals
or on demand if new clients are expected to join in viewing a
stream (Apostolopoulos and Wee, 1999). A group of frames from
one I-frame to the frame immediately preceding the next I-frame
is commonly referred to as a GoP (Seeling and Reisslein, 2014).

The encoding of a P-frame is intended to reduce the temporal
redundancies across frames, thus affording better compression
rates (Wang and Farid, 2006). P-frames, which are more compress-
ible than I-frames (Yao et al., 2014), use the information of previ-
ous frames (I-and P-frames) to decompress. B-frame is the most
compressed frame that utilizes previous and forward frames
(I- and P-frames) as reference data (Yang et al., 2016). The earlier
standards such as MPEG-1 and MPEG-2 supported the classic
GoP structure shown in Fig. 2; it starts with an I slice. P slices
are inserted at intervals.
ards (adapted from Golston (2004)).

Fig. 2. Classic GoP (Richardson, 2010).

Fig. 3. Hierarchical GOP structure (Richardson, 2010).

732 O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740
Moreover, B slices are inserted between I and P slices. The major
shortcomings of classic GoP are increased delay and larger frame
storage requirements. The H.264 flexibility prediction option moti-
vated the concept of hierarchical GoP structure as shown in Fig. 3
and extended to H.265. In hierarchical GoP structure, the GoP
starts with I0 and finishes with I12. Then, slice B6 is predicted using
I0 and I12 as references. B3is predicted from I0 and B6; B9 is pre-
dicted from B6 andI12. B1 and B2 are predicted from I0 and B3 and
so on (Richardson, 2010).

3. Existing P2P video streaming protocols

Over the years, diverse scientific studies have been conducted
on the P2P video streaming protocols, ranging from P2P overlay
construction, data sharing strategy, adoption of advanced video
coding, to the application of network coding technique and many
more (Hu et al., 2011). The outcomes of previous studies have pro-
duced various widely deployed commercial P2P live streaming sys-
tems with a large number of Internet viewers. CoolStreaming is a
data-driven overlay network for P2P live media streaming. The
scheme ensures that every node periodically exchanges data avail-
ability information with a set of partners, and retrieves required
data from one or more partners, or supplies available data to part-
ners. A scalable membership and partnership management algo-
rithm together with an intelligent scheduling algorithm was
proposed, which enables efficient streaming for medium to high
bandwidth contents with low control overhead. CoolStreaming
achieves high streaming quality and minimal delay (Zhang et al.,
2005).

SopCast is one of the most popular P2PTV applications that
allows a user to broadcast video contents via a channel (SopCast,
2007). The SopCast Client has multiple choices of TV channels, each
of which forms its own overlay. Each channel streams either live
audio-video feeds, or loop-displayed movies according to a preset
schedule. The viewer tunes into a channel of his choice and Sop-
Cast starts its own operations to retrieve the stream. After some
seconds a player pops up and the stream can be seen (Fallica
et al., 2008).

Anysee is another P2P live streaming scheme. It is an inter-
overlay optimisation (IOO) scheme that adopts the mesh-based
topology to construct efficient paths, using peers in different over-
lays(Liao et al., 2006). In the scheme, efficient mesh-based overlay
was constructed; location detector-based algorithm was employed
to match the overlay with the underlying physical topology. Sec-
ondly, a single overlay manager was adapted to deal with the
join/leave operations of peers and the buffer manager was
designed for management and scheduling of transmission of media
data. The IOO improves global resource utilisation and distribute
traffic to all physical links evenly (Liao et al., 2007).

R2 is another streaming algorithm that incorporates random
network coding with a randomized push algorithm. R2 improves
the performance of live streaming in terms of initial buffering
delays, resilience to peer dynamics and bandwidth costs reduction
on dedicated streaming servers. Also, seeds in R2 receive feedback
from downstream peers in a timely manner (Wang and Li, 2007).

Furthermore, PPLive is a free P2P IPTV application that provides
over 200 channels to an average of 400,000 users on daily basis.
Through measurement study conducted on PPLive, it has been pro-
ven that Internet infrastructure is capable of providing the perfor-
mance requirements of IPTV at low cost and with minimal
dedicated infrastructure (Hei et al., 2007).

A new framework for P2P media streaming named BEAM, was
introduced in Purandare and Guha (2007). In BEAM, nodes cluster
into groups, called alliances, for a symbiotic association in order to
share the media content. Through empirical investigation, the
researchers proved that alliance formation is an effective way to
organize the peers in loosely coupled groups. The node topology
formed, using alliances, generates a small world network, which
exhibits efficient overlay structures in terms of path lengths
between the nodes and robustness to network perturbations like
churn. ToroStream, a P2P protocol for live video streaming was
presented by some other researchers in Fiandrotti et al. (2012).
This protocol was designed to minimize communication delay
using push-based packet scheduler and an efficient feedback
mechanism. Experimental results showed that the protocol
achieved continuous streaming even on lossy networks, support
hundreds of users with a small initial buffering and suitable for
low-delay video communications.

Moreover, RapidStream, a proof-of-concept implementation of
a P2P video streaming application for android compatible devices,
was presented in Eittenberger et al. (2012). A multicast tree topol-
ogy was created in Hammami et al. (2014) based on upload capac-
ity and each group in a tree forms a mesh topology. Each group
represents a level of upload capacity. It was assumed that the
source possesses the most upload capacity and belongs to level 0
(the highest level). The multimedia contents are delivered from
the source being a member of the highest level to the low levels.
That allows moving the powerful peers close to the source.
Through extensive simulations and evaluation, the topology
achieved minimum start-up delay, the end-to-end delay and the
play-back delay.

Also, a P2P protocol for live streaming networks was formu-
lated. The scheme employs a packet integration mechanism along
with a random network coding in order to increase network
throughput and video quality. It is a push-pull mesh-based proto-
col that gives higher priority to the base video layers for transmis-
sion among peers. It was assumed that the system is a trust-based
system and no data poisoning is possible. The data, however, may

O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740 733
get lost during the communication due to the noise or the missed
deadline (Ayatollahi et al., 2018) and many more.

From the review of related work, it was discovered that P2P
streaming protocols are implemented on either tree-based topol-
ogy and mesh-based topology with efforts to control delay and
flash crowd over the network. It was observed that the tree-
based topologies are represented in form of a structured hierarchy,
while the mesh-based topology presented an unstructured hierar-
chy. The structured system ensures orderliness in the network
because peers join and leave the network in a fashionable manner
as defined by the overlay topology but the major shortcoming of
structured topology is the dependability of the children peers on
the equivalent parent peers. This implies that a failure at the par-
ent peer connotes a failure to all the attached children’s peers
which makes it unstable in dynamic environments and large-
scale networks.

On the other hand, an unstructured system allows peers to join
and leave the network without policy enforcement, and distribute
traffic to all peers evenly. In a situation where any of the parent
peers fails, the children peer can directly feed from the next avail-
able peer. Unstructured topology addresses the challenge of struc-
tured topology with its ability to disseminate chunks directly to
the neighbouring peers though it is liable to flash crowd and high
churn situation due to unplanned interruptions. The mixture of the
tree-based and the mesh-based topology is called hybrid – com-
bining the advantages of both tree-based and mesh-based topology
to improve performance of the peers in the network (Hammami
et al., 2014). High churn, accommodating unreliable peers, starva-
tion of peers and high packet loss are the major drawbacks
deduced from the existing work. Hence, an ultra-metric spanning
overlay topology for P2PSS (UStream Protocol) was proposed by
Ojo et al. (2015).
Table 1
Computation tree logic operators.

Symbols Meaning

AG (everywhere – along all paths)
EF (everywhere – along some path)
AF (somewhere – along all paths)
AX (all successors)

A [w1 U w2] (until – along all paths)
: negation
^ conjunction
_ disjunction
4. UStream protocol overview

UStream is a three-layer video streaming protocol which con-
sists of adaptation, scheduling and topology layers, as fully
described in Ojo et al. (2015). Mapping UStream protocol to the
standard transmission control protocol and Internet protocol
(TCP/IP), raw videos are sent directly to the adaptation layer which
ensures that video frames are encoded/decoded. The adaptation
layer of UStream protocol is located at the application layer of
TCP/IP model. The encoded video frames move from the applica-
Fig. 4. UStream Protoco
tion layer to the transport layer. In addition to the default functions
of the transport layer, UStream’s transport layer is enhanced with a
frame scheduler referred to as scheduling layer. Therein, the sched-
uled frames are sent to the Internet layer (another addition)
referred to as the topology layer in the UStream protocol. Specifi-
cally, a P2P overlay structure was designed for the topology layer
that is located at the Internet layer of the TCP/IP model.
4.1. UStream model checking and assumptions

The model checking of the various modules in the UStream pro-
tocol was tested using boolean logic; that is, true (: Error) or false
(Error) as shown in Fig. 4. Starting with the capture module, a sim-
ple true (: Error) or false (Error) check is performed. In the case of
successful video capturing, the model checking process returns a
true value and switches to the next stage (Encode module), other-
wise the process returns false value (which means the video data
will be re-captured). This process of true (: Error) or false(Error)
checking was repeated through other modules to the playout mod-
ule. The model checking can best be described as a single direction
checking strategy. However, assume that an error occurs in the
course of checking module(n), model checking process returns a
false value and transits to module(n-1).

The Schedule and Overlay Network modules in Fig. 4 are the
main contributions of this research. Sections 4.2 and 4.2 present
a detailed model checking for schedule and overlay network mod-
ules using computation tree logic (CTL) to explicitly test all the
possible behaviors of the states therein. The definitions for CLT
operators is given in Table 1.
l Model Checking.

734 O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740
4.2. Specification for the schedule module

The schedule module representing the scheduling layer of the
UStream protocol implements a congestion control scheme which
is a hybrid of weight fair queuing and leaky bucket techniques. It
consists of frame classifier, time controller and traffic shaper.
Frame classifier groups video frames into frame types and attach
weights to these frames [I-, P- or B-frames]. The time controller
allocates time slots to frames on the basis of prioritization to mit-
igate unnecessary delay, thereafter sends such classified frames to
the traffic shaper. Finally, the traffic shaper admits the prioritized
frames and attempts to regulate frame rates with the objective of
achieving a steady flow of frames using the leaky bucket technique.
In our modelling, we assumed that the schedule module employs
the hierarchical GoP structure with priority given to I-frames.
Table 2 presents definition of terms used for specification. The
following casespresent all possible instances and behaviors of the
schedule module.

Case 1. A classifier is embedded at the input phase of the schedule
module which accepts video frames and classified based on the
specified frame type. Here, the aim is to check whether all frames
within the schedule module along all path are classified or not. The
specification is defined as ‘‘If frames arrived, then the frames are
classified” and represented as: AG (Arrived ! Classify).
Case 2. As discussed earlier, I-frame is an important frame in the
GoP when compared with other frame types. Based on the func-
tions offered by I-frame, another crucial procedure in the
schedule module is prioritizing I-frame. Therefore, whenever an
I-frame is encountered, it is moved immediately to the next
phase without delay. Hence, we defined the specification for this
instance as ‘‘If classify is true and IFrame is true in any subsequent
state, then priority will eventually become true until IFrame is false”
and it is represented as:

AG (Classify ^IFrames) ! A(: IFrames U Priority)).
Case 3. The system checks if the time controller functions as
designed by forwarding frames to the traffic shaper. The specifica-
tion is defined as: ‘‘Whenever the time controller is correctly acti-
vated, it eventually sends frames to traffic shaper” and it is
symbolized as follows:

AG ((Start-Tc ^: Error)! AF SendFrames-Ts).
Case 4. Another function of the time controller is to consistently
check the classified frames buffer to prempt unneeded delay or
starvation. The specification is given as ‘‘Whenever the time con-
troller is correctly activated, it eventually checks classified buffers reg-
ularly” and it is written as:

AG ((Start-Tc ^: Error)! AF Checks-ClassifiedBuffers).
Table 2
Terminologies in Schedule Module.

Terms Meaning

Arrived Arrival of frames
Classify Classification of frames
Iframe I-frame
Pframe P-frame
Bframe B-frame
Priority Prioritize frame

TS Traffic shaper
Tc Time controller
Case 5. The possibility of fast-forwarding delayed frames within
the classified frames buffer into the traffic shaper is explored. We
defined the specification as ‘‘Whenever a frame is delayed unneces-
sarily in the classified buffers, then it is moved into the traffic shaper
immediately” and represented as:

AG ((FrameDelay ! AF SendFrames-Ts).
Case 6. The system checks output of traffic shaper for a steady
flow rate. The specification is given as ‘‘Whenever the traffic shaper
is correctly activated, it eventually sends frames at constant rate” and
it is symbolized as:

AG ((Start traffic shaper ^: Error)! AF Constant).
Case 7. Lastly, the possibility of forwarding frames within the
schedule module despite the occurrence of error anywhere was
tested. The specification is defined as ‘‘Whenever an error occurs,
it is still possible to send frames” and it is represented as:

AG (Error ! EF SendFrame).
4.3. Specification for overlay network module

The overlay network module represents the topology layer of
the UStream protocol. A detailed information about the UStream
topology layer is given in Ojo et al. (2015). We assumed that the
overlay network module support peer-assisted content distribu-
tion (that is, peers can also receive frames directly from the
streaming server). Table 3 presents terms used in the specification
of the overlay network module and all probable steps attributes of
the overlay module are specified as follows:

Case 1. The system is checked if active peers (that is, connected
peers) within the overlay network module can either send or
receive frames. The specification is defined as ‘‘If peer is active, then
peer can send or receive frames” and it is represented as follows:

AG (Active ! Send _ Receive).
Case 2. The possibility of active peers to send and receive frames
simultaneously is tested. We defined the specification as ‘‘If peer
is active, then peer can send and receive frames” and it is symbolized as:

AG (Active ! Send ^ Receive).
Case 3. In the overlay network module, the peers at higher layer
can easily exchange information with lower layer peers. For
instance, the parent peers can send or receive frames to and from
their respective children peers. The specification is defined as
‘‘Whenever a layern peer is correctly linked to layer nþ1, eventually
layer nþ1 will send or receive frames” and it is represented as:
Table 3
Terminologies in Overlay Network Module.

Terms Meaning

Active Connected pair of nodes
Send Sending frames to another node

Receive Receiving frames from another node
layern Layers in UStream protocol(n = 1,2,3)
layernþ1 Next low layer

Equaldistance Peers receiving frames the same time

O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740 735
AG ((layern links layernþ1 ^: Error)! AF Send _ Receive).
Case 4. Similar to Case 3, the system checks if the higher level
peers can send and receive frames to and from their respective
lower-level peers. It is specified as ‘‘Whenever a layern peer is
correctly linked to layer nþ1, eventually layer nþ1 will send and receive
frames” and symbolized as:

AG ((layern links layernþ1 ^: Error)! AF Send ^ Receive).
Case 5. We checked for the possibility of lower-level peers acting
as approximate high-level peers in case any higher-level layer is
inactive. The specification is defined as ‘‘Whenever an error occurs
at layern, eventually layer nþ1 becomes approximate layer n” and it
is represented as:

AG (Error layer n ! EF (layer nþ1 ! approximate layer n)).
Case 6. The equidistant function of the overlay network module is
tested in this instance i.e. possibility that peers frames rate is equal
irrespective of differences in peers distances. The specification is
given as ‘‘All peers at layer nþ1 are equidistant from peer at layer n”
and it is represented as:

AG (peers ! AX (layer nþ1 ! EqualDistance layer n).
5. Model verification

We implemented UStream streaming protocol with the simu-
link design verifier (SDV) within MATLAB R2017a (See Fig. 5).
The capture module is implemented as an input video file (180
� 360, 30 fps, uncompressed) using the multimedia files block
function with image signal set at one multidimensional. The
encode and decode modules are implemented using motion
Fig. 5. UStream Proto
compensation and discrete cosine transform techniques (adapted
from MPEG video compression example in MATLAB). The output
from the compression block is a stream representing sequence of
video frames. We assumed that the video frames from the MPEG
compression block feeds the schedule module for onward trans-
mission of frames to the decode module (Decompression, MPEG)
through the overlay network module. Lastly, regulated video
frames are released from the playout buffer module implemented
with a viewer function. As discussed earlier in Section 4, simple
error check is performed on each module in the streaming proto-
col. To achieve model checking, model verification assertion func-
tion in MATLABis utilized. The assertion function is implemented
for all the modules to ascertain the behavior of video frames at
each stage, that is, if transmission is successful, the video frames
move to the next phase, else, an error message is generated.

5.1. Verification of the schedule module

All the possible processes running within the schedule module
are implemented using temporal logic function. Fig. 6 presents the
parent schedule module as modeled in SDV environment. The
model consists of input and output variables, verification modules,
command windows, control system and logical flow. The input
variables are: Iframe, bframe, pframe, status, restart, arrive, corrupt,
controller, shaper and frameDelay, and the output variables are: con-
stant rate, classify, priority and traffic shaper. Also, each specification
of schedule module stated in Section 4.2 are represented using ver-
ification modules that are connected to the parent schedule mod-
ule as shown in Fig. 6. These specifications are verified for accuracy
and validity with boolean variables 0 (false), 1 (true) and values
between 0 and 1 (degree of accuracy).

The output results from the verification modules were dis-
played using the command windows. Furthermore, the main func-
tion of the control system as depicted in Fig. 7 is to synchronize the
input variables from the parent schedule module with logical flow.
The control system serves as an intermediary between the parent
module and its logical flow. The restart, status, controller, shaper
col in Simulink.

Fig. 6. Schedule Parent Module in MATLAB.

Fig. 7. Schedule Module Control System.

736 O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740
and frameDelay input variables moves to the logical flow without
any process by the control system.

However, the control system checks the state of the frame
before moving to the logical flow (to check if arrived frame is cor-
rupted or not) using the truth table function in SDV. Similarly, the
type of received frame is also checked for Iframe, Pframe or Bframe.
Therefore, the input variables (arrive and corrupt) are processed by
the control system to produce a single output tagged as ‘‘frame”
(arrive or corrupt). In addition, the control system performs logical
operation on the input variables Iframe, Pframe, Bframe which in
turn produce output ‘‘frameType” (Iframe or Pframe or Bframe) as
depicted in Fig. 7. The logical flow serves as the engine of the
schedule module, It describes the state flow sequence of schedule
module. It accepts frames from the control system, classifies
frames using prioritization scheme, put classified frames to the
traffic shaper using the time controller (which also ensures that
frames are not delayed unnecessarily) and ensures constant flow
of frames from the traffic shaper.

Fig. 8. Overlay-Network Parent Module in MATLAB.

O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740 737
5.2. Verification of the network module

The overlay module is implemented and verified in SDV
environment using temporal logic function. The overlay-
network parent module, as depicted in Fig. 8 consists of input
and output variables, verification modules, control system, logical
flow and command windows. The input variables defined for
overlay-network module are: active, send, receive, top peer, low
peer and error. The output variables specified are: send, receive,
Fig. 9. Overlay-Network M
approximate and equidistant. Furthermore, each specification pre-
sented in Section 4.3 are implemented in the verification mod-
ules to test the consistency and accuracy of the system. The
control system, as depicted in Fig. 9, serves as a middle-ware
between the overlay-network parent module and logical flow.
The active and error input variables are reprocessed by the
control system using the truth table component (i.e., driven by
boolean values (0,1)) which produces an output value ‘‘peer”
(i.e., active or error).
odule Control System.

738 O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740
Similarly, receive and send input variables from the parent mod-
ule are processed by the control system using the truth table func-
tion and generate output variable ‘‘frame”(send or receive).
However, the input variables top and low peers are moved directly
as input in the control system. The logical flow drives the parent
module. It implements all steps involved in the overlay network
module; it checks for the following: (i) whether the peers in the
system are active or inactive, (ii) whether peers in the system
can send or/and receive frames, (iii) the possibility of peers to
become approximate peers and (iv) the possibility of peers within
the same location to receive frames at the same time (that is,
equidistant feature). Finally, the output results are displayed
through the command windows.
6. Results and discussion

The outputs generated from the verification of UStream proto-
col are presented in this section. We start with the results of
error-checking for all the modules. The simulation result shows
Fig. 10. UStream Protocol Output.

Fig. 11. The Graph o
that the video file was successfully transmitted from the encode
module to the playout buffer module without error. The original
video (see Fig. 10)a and the video output (See Fig. 10b) as observed
are not perfect match due to loss of details. The occurrence of loss
is evident in the traffic pattern depicted in Fig. 12. However, most
of the salient features of the video are preserved. This error-free
simulation result generated at the playout buffer module, implies
a smooth transfer of video frames across all the modules in
UStream protocol. Therefore, the error-free transmission validates
the system and proves that the protocol is correct and consistent.
6.1. Verification results of schedule module

The results on classification of frames in schedule module vali-
date the specification stated in Section 4.2 (case 1). Implementa-
tion of schedule module are driven by Boolean values: 0
represents false, 1 represents true and values between 0 and 1 rep-
resents the degree at which a specification is true. The result
showed 100% validation for classification of frames in schedule
module. This gives 100% assurance that all frames within schedule
module will definitely be classified.

Also, the result for schedule module specification stated in Sec-
tion 4.2 (case 2), suggests that prioritizing Iframe can only be true
at the beginning ofa streaming session. Moreover, a gradual
increase in movement between 0% and approximately 50% degree
of validation occurred over � a period of 1 s. Furthermore, Fig. 11
presents the verification for the specifications stated in Section 4.2
(cases 3–5). This figure shows that the time controller effectively
transmitted frames (or delay frames) in the classified buffers to
the traffic shaper. Although, some degree of oscillations between
0 and 1 over a period of 10 s were observed. This behavior points
to transmission delay/failure at certain point within the system.
The outcome of Section 4.2 (case 6) as depicted in Fig. 12, revealed
50% validation for constant flow of frames over 100 s with an inter-
val break in transmission. This implies that the probability of
achieving steady flow of video frames from the traffic shaper is
0.5 and the occurrence of interval may connote frame losses.
Finally, the result of specification stated in Section 4.2 (case 7) val-
idates the possibility of forwarding frames for a period of 20 s,
despite the occurrence of errors at some point in the system.
6.2. Verification results of UStream module

The results for verification of Section 4.3 as showed in Fig. 13
revealed peers behavior in overlay module.The results on peers
behaviour during sending or/and receiving frames as specified in
Section 4.3 (cases 1–4) ascertains that the probability of peers
f Traffic Shaper.

Fig. 12. The Graph of Constant Flow.

Fig. 13. The graph of Peers Behavior.

O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740 739
forwarding frames while receiving frames simultaneously is 50%
(see Fig. 13a). On the other hand, the chances of peers receiving
frames while sending frames is oscillatory between 0 and 1(as
shown in Fig. 13b). However, a few consistent interval transmis-
sion failures, which may indicate delay in exchanging frames
among peers, were observed. The result on approximate peers as
specified in Section 4.3 (case 5) gives 50% validation with periodic
failures(as displayed in Fig. 13a). This showed that the possibility
of peers becoming an approximate is 50% and the periodic failures
observed are as a result of heavy traffic load upon the approximate
peer (since the original peers is down, the approximate caters for
more peers). Lastly, result on equidistant between peers as speci-
fied in Section 4.3 (case 6) is oscillatory between true and false
which proves that peers can be equidistant or otherwise(see
Fig. 13b).

7. Conclusions

This paper presents the system analysis and verification of a P2P
streaming protocol (UStream protocol) using model checking. The
behavior of schedule and overlay network modules of the UStream
protocol were specified using CTL. Each specification was verified
using SDV within MATLAB simulation tool to check whether the
temporal properties satisfy all the possible behaviors of the proto-
col. The simulation results proved that UStream protocol can
achieve effective transmission of video files across peer-to-peer
networks. In addition, the results revealed that the protocol can
dynamically adapt to peer churn situation with 50% peers
becoming approximate peers. Also, there is a 50% probability that
peers are able to forward and receive frames simultaneously.
Furthermore, the verification results revealed consistency in the
scheme and presents a best case validation at 100% for some spec-
ifications and average case at 50% in other specifications. However,
transmission delay/failure and frame losses were encountered in
some case studies. Further research efforts will be targeted
towards UStream protocol re-engineering for reduced transmission
delay and frame loss as well as testing with the scalable video cod-
ing compressing technique.
Acknowledgments

This research is supported by 2014/2015 Tertiary Education
Trust Fund (TeTFund) Academic Staff Training and Development
(AST&D) Grant of Federal University of Agriculture, Abeokuta,
Nigeria.
References

Akbari, A., Rosell, J., 2017. Physics-based motion planning with temporal logic
specifications. IFAC-PapersOnLine 50 (1), 8993–8999.

Alessandria, E., Gallo, M., Leonardi, E., Mellia, M., Meo, M., 2011. Impact of adverse
network conditions on P2P-tv systems: Experimental evidence. Comput. Netw.
55 (9), 2035–2050.

Apostolopoulos, J., Wee, S., 1999. Video Compression Standards, Wiley Encyclopedia
of Electrical and Electronics Engineering. John Wiley and Sons Inc, New York.

Armando, A., Carbone, R., Compagna, L., Li, K., Pellegrino, G., 2010. Model-checking
driven security testing of web-based applications. In: Third International
Conference on Software Testing, Verification, and Validation Workshops
(ICSTW), IEEE, pp. 361–370.

Armando, A., Ponta, S.E., 2009. Model checking of security-sensitive business
processes. In: International Workshop on Formal Aspects in Security and Trust.
Springer, pp. 66–80.

http://refhub.elsevier.com/S1319-1578(18)30424-5/h0005
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0005
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0010
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0010
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0010
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0015
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0015
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0025
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0025
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0025

740 O.E. Ojo et al. / Journal of King Saud University – Computer and Information Sciences 32 (2020) 730–740
Ayatollahi, H., Khansari, M., Rabiee, H., 2018. A push-pull network coding protocol
for live peer-to-peer streaming. Comput. Netw. 130, 145–155.

Barekatain, B., Khezrimotlagh, D., Maarof, M., Ghaeini, H., Quintana, A.A., Cabrera, A.,
2015. Efficient P2P live video streaming over hybrid wmns using random
network coding. Wireless Pers. Commun. 80 (4), 1761–1789.

Barekatain, B., Khezrimotlagh, D., Maarof, M., Ghaeini, H., Salleh, S., Quintana, A.A.,
Akbari, B., Cabrera, A.T., 2013. Matin: a random network coding based
framework for high quality peer-to-peer live video streaming. PloS One 8 (8),
e69844.

Basin, D., Caleiro, C., Ramos, J., Viganò, L., 2011. Distributed temporal logic for the
analysis of security protocol models. Theoret. Comput. Sci. 412 (31), 4007–
4043.

Batt, G., Belta, C., Weiss, R., 2008. Temporal logic analysis of gene networks under
parameter uncertainty. IEEE Trans. Autom. Control 53 (Special Issue), 215–229.

Bellini, P., Mattolini, R., Nesi, P., 2000. Temporal logics for real-time system
specification. ACM Comput. Surveys (CSUR) 32 (1), 12–42.

Biere, A., Cimatti, A., Clarke, E., Zhu, Y., 1999. Symbolic model checking without
bdds. In: International Conference on Tools and Algorithms for the Construction
and Analysis of Systems. Springer, pp. 193–207.

Brienza, S., Cebeci, S., Masoumzadeh, S., Hlavacs, H., Özkasap, Ö., Anastasi, G., 2016.
A survey on energy efficiency in P2P systems: file distribution, content
streaming, and epidemics. ACM Comput. Surv. 48 (3), 36.

Chen, Y., Zhang, B., Chen, C., Chiu, D., 2014. Performance modeling and evaluation of
peer-to-peer live streaming systems under flash crowds. IEEE/ACM Trans.
Network. (TON) 22 (4), 1106–1120.

Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H., 2003. Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM (JACM) 50 (5), 752–
794.

Clarke, E., Grumberg, O., Peled, D., 1999. Model Checking. MIT Press.
Datta, A., Derek, A., Mitchell, J., Roy, A., 2007. Protocol composition logic (PCL).

Electron. Notes Theor. Comput. Sci. 172, 311–358.
Davies, R., 2017. A temporal logic approach to binding-time analysis. J. ACM (JACM)

64 (1), 1:1–1:45.
Dixon, C., Gago, M.-C.F., Fisher, M., van der Hoek, W., 2007. Temporal logics of

knowledge and their applications in security. Electron. Notes Theor. Comput.
Sci. 186, 27–42.

Dixon, C., Winfield, A.F., Fisher, M., Zeng, C., 2012. Towards temporal verification of
swarm robotic systems. Rob. Auton. Syst. 60 (11), 1429–1441.

Eittenberger, P.M., Herbst, M., Krieger, U.R., 2012. Rapidstream: P2p streaming on
android. In: Packet Video Workshop (PV), 2012 19th International, IEEE, pp.
125–130.

Fallica, B., Lu, Y., Kuipers, F., Kooij, R., Mieghem, P.V., 2008. On the quality of
experience of sopcast. In: The Second International Conference on Next
Generation Mobile Applications, Services and Technologies (NGMAST). IEEE,
pp. 501–506.

Fiandrotti, A., Sheikh, A., Magli, E., 2012. Towards a P2P videoconferencing system
based on low-delay network coding. In: Signal Processing Conference
(EUSIPCO), 2012 Proceedings of the 20th European. IEEE, pp. 1529–1533.

Ghaeini, H.R., Akbari, B., 2014. Peer-to-peer adaptive forward error correction in live
video streaming over wireless mesh network. In: International Conference on
Wired/Wireless Internet Communications. Springer, pp. 109–121.

Ghaeini, H.R., Akbari, B., Barekatain, B., 2013. An adaptive packet loss recovery
method for peer-to-peer video streaming over wireless mesh network. In:
Emerging Technologies for Information Systems, Computing and Management.
Springer, pp. 713–721.

Ghaeini, H.R., Akbari, B., Barekatain, B., Trivino-Cabrera, A., 2016. Adaptive video
protection in large scale peer-to-peer video streaming over mobile wireless
mesh networks. Int. J. Commun Syst 29 (18), 2580–2603.

Golston, J., 2004. Comparing media codecs for video content. In: Embedded Systems
Conference, San Francisco.

Gomes, P., Campos, S., Vieira, A., 2012. Verification of P2P live streaming systems
using symmetry-based semiautomatic abstractions. In: International
Conference on High Performance Computing and Simulation. pp. 343–349.
https://doi.org/10.1109/HPCSim.2012.6266935.

Gonçalves, G.D., Cunha, Í., Vieira, A., Almeida, J., 2016. Predicting the level of
cooperation in a peer-to-peer live streaming application. Multimedia Syst. 22
(2), 161–180.

Hammami, C., Jemili, I., Gazdar, A., Belghith, A., Mosbah, M., 2014. Hybrid live P2P
streaming protocol. Procedia Comput. Sci. 32, 158–165.

Haskell, B., Puri, A., 2012. Mpeg video compression basics. In: The MPEG
Representation of Digital Media. Springer, pp. 7–38.

Hei, X., Liang, C., Liang, J., Liu, Y., Ross, K., 2007. A measurement study of a large-
scale P2P IPTV system. IEEE Trans. Multimedia 9 (8), 1672–1687.

Hu, H., Guo, Y., Liu, Y., 2011. Peer-to-peer streaming of layered video: efficiency,
fairness and incentive. IEEE Trans. Circuits Syst. Video Technol. 21 (8), 1013–
1026.

Jiang, M., Ma, Z.-F., Niu, X.-X., Yang, Y.-X., 2011. Video watermarking scheme based
on MPEG-2 for copyright protection. Procedia Environ. Sci. 10, 843–848.

Le, L., Nguyen, S., Nguyen, N.X., Dang, T., 2017. A principle of adaptively grouping
frames on lossless medical video compression using ideal cross-point regions.
In: International Conference on the Development of Biomedical Engineering in
Vietnam. Springer, pp. 19–23.
Liao, X., Jin, H., Liu, Y., Ni, L., 2007. Scalable live streaming service based on
interoverlay optimization. IEEE Trans. Parallel Distrib. Syst. 18 (12), 1663–1674.

Liao, X., Jin, H., Liu, Y., Ni, L., Deng, D., 2006. Anysee: Peer-to-peer live streaming. In:
25th International Conference on Computer Communications. IEEE, pp. 1–10.

Liu, J., Ozay, N., Topcu, U., Murray, R., 2013. Synthesis of reactive switching
protocols from temporal logic specifications. IEEE Trans. Autom. Control 58 (7),
1771–1785.

Magharei, N., Rejaie, R., 2009. Prime: peer-to-peer receiver-driven mesh-based
streaming. IEEE/ACM Trans. Network. (TON) 17 (4), 1052–1065.

Merani, M., Natali, L., 2016. Adaptive streaming in P2P live video systems: a
distributed rate control approach. ACM Trans. Multimedia Comput. Commun.
Appl. 12 (3), 46.

Miller, A., Donaldson, A., Calder, M., 2006. Symmetry in temporal logic model
checking. ACM Comput. Surveys (CSUR) 38 (3), 8.

Naiem, A., El-Beltagy, M., 2016. Nat constraints management in tree-based P2P live
streaming systems. In: Proceedings of the 10th International Conference on
Informatics and Systems. ACM, pp. 292–297.

Ohm, J.-R., Sullivan, G., Schwarz, H., Tan, T., Wiegand, T., 2012. Comparison of the
coding efficiency of video coding standards–including high efficiency video
coding (HEVC). IEEE Trans. Circuits Syst. Video Technol. 22 (12), 1669–1684.

Ojo, O., Oluwatope, A., Ajadi, S., 2017. Dynamical analysis of an internet-based video
system. IFAC-PapersOnLine 50 (2), 221–226.

Ojo, O., Oluwatope, A., Ogunsola, O., 2015. Ustream: Ultra-metric spanning overlay
topology for peer-to-peer streaming systems. In: 2015 IEEE International
Symposium on Multimedia (IEEEISM-2015). IEEE, Miami, Florida, USA, pp. 601–
604.

Purandare, D., Guha, R., 2007. An alliance based peering scheme for P2P live media
streaming. IEEE Trans. Multimedia 9 (8), 1633–1644.

Richardson, I., 2010. The H.264 Advanced Video Compression Standard. Wiley. Ch.
6, pp. 169–171.

Rozier, K.Y., 2011. Linear temporal logic symbolic model checking. Comput. Sci. Rev.
5 (2), 163–203.

Sandvik, P., Sere, K., 2011. Formal analysis and verification of peer-to-peer node
behaviour. In: The Third International Conference on Advances in P2P System.
Citeseer, pp. 47–57.

Seeling, P., Reisslein, M., 2014. Video traffic characteristics of modern encoding
standards: H. 264/AVC with SVC and MVC extensions and h. 265/HEVC. Sci.
World J. 2014, 1–16.

Shen, H., Lin, Y., Li, J., 2015. A social-network-aided efficient peer-to-peer live
streaming system. IEEE/ACM Trans. Network. 23 (3), 987–1000.

SopCast, 2007. Sopcast – free P2P internet tv. Date accessed: 15/06/2018. URLhttp://
www.sopcast.org.

Sullivan, G., 2005. Overview of international video coding standards (preceding h.
264/avc). In: ITU-T VICA workshop, Geneva.

Ullah, I., Doyen, G., Bonnet, G., Gaïti, D., 2012a. An autonomous topologymanagement
framework for qos enabled P2P video streaming systems. In:Network and service
management (CNSM), 2012 8th international conference and 2012 workshop on
systems virtualiztion management (SVM). IEEE, pp. 126–134.

Ullah, I., Doyen, G., Bonnet, G., Gaïti, D., 2012b. A survey and synthesis of user
behavior measurements in P2P streaming systems. IEEE Commun. Surveys
Tutorials 14 (3), 734–749.

Ullah, I., Doyen, G., Bonnet, G., Gaïti, D., 2013. Towards user-aware peer-to-peer live
video streaming systems. In: Integrated Network Management (IM 2013), 2013
IFIP/IEEE International Symposium on. IEEE, pp. 920–926.

Wallach, D.S., 2003. A survey of peer-to-peer security issues. In: Software Security,
Theories and Systems. Springer, pp. 42–57.

Wang, M., Li, B., 2007. R2: random push with random network coding in live peer-
to-peer streaming. IEEE J. Sel. Areas Commun. 25 (9).

Wang, W., Farid, H., 2006. Exposing digital forgeries in video by detecting double
mpeg compression. In: Proceedings of the 8th workshop on Multimedia and
security. ACM, pp. 37–47.

Xiao, Z., Ye, F., 2008. New insights on internet streaming and iptv. In: Proceedings of
the 2008 international conference on Content-based image and video retrieval.
ACM, pp. 645–654.

Yang, C., Wu, C., Yang, Z., Liu, T., Yin, Z., Liu, Y., Mao, X., 2016. Enhancing industrial
video surveillance over wireless mesh networks. In: 25th International
Conference on Computer Communication and Networks. IEEE, pp. 1–9.

Yao, H., Song, S., Qin, C., Tang, Z., Liu, X., 2017. Detection of double-compressed h.
264/AVC video incorporating the features of the string of data bits and skip
macroblocks. Symmetry 9 (12), 313.

Yao, X.-W., Wang, W.-L., Yang, S.-H., Cen, Y.-F., Yao, X.-M., Pan, T.-Q., 2014. IPB-
frame adaptive mapping mechanism for video transmission over IEEE 802.11e
WLANs. ACM SIGCOMM Comput. Commun. Rev. 44 (2), 5–12.

Zatt, B., Porto, M., Scharcanski, J., Bampi, S., 2010. Gop structure adaptive to the
video content for efficient h. 264/avc encoding. In: 2010 17th IEEE International
Conference on Image Processing. IEEE, pp. 3053–3056.

Zhang, X., Liu, J., Li, B., Yum, T., 2005. Coolstreaming/donet: a data-driven overlay
network for peer-to-peer live media streaming. In: 24th Annual Joint
Conference of the IEEE Computer and Communications Societies. vol. 3. IEEE,
pp. 2102–2111.

http://refhub.elsevier.com/S1319-1578(18)30424-5/h0030
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0030
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0035
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0035
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0035
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0040
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0040
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0040
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0040
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0045
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0045
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0045
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0050
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0050
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0055
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0055
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0060
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0060
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0060
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0065
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0065
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0065
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0070
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0070
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0070
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0075
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0075
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0075
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0080
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0085
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0085
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0090
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0090
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0095
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0095
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0095
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0100
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0100
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0120
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0120
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0120
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0125
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0125
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0125
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0125
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0130
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0130
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0130
https://doi.org/10.1109/HPCSim.2012.6266935
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0145
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0145
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0145
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0150
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0150
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0155
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0155
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0160
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0160
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0165
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0165
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0165
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0170
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0170
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0175
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0175
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0175
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0175
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0180
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0180
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0190
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0190
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0190
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0195
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0195
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0200
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0200
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0200
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0205
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0205
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0215
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0215
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0215
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0220
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0220
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0225
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0225
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0225
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0225
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0230
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0230
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0235
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0235
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0240
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0240
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0250
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0250
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0250
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0255
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0255
http://www.sopcast.org
http://www.sopcast.org
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0275
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0275
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0275
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0285
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0285
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0290
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0290
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0310
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0310
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0310
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0315
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0315
http://refhub.elsevier.com/S1319-1578(18)30424-5/h0315

	Formal verification of a peer-to-peer streaming protocol
	1 Introduction
	2 Video coding technology
	3 Existing P2P video streaming protocols
	4 UStream protocol overview
	4.1 UStream model checking and assumptions
	4.2 Specification for the schedule module
	4.3 Specification for overlay network module

	5 Model verification
	5.1 Verification of the schedule module
	5.2 Verification of the network module

	6 Results and discussion
	6.1 Verification results of schedule module
	6.2 Verification results of UStream module

	7 Conclusions
	Acknowledgments
	References

