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Abstract— Wireless Sensor Networks (WSN) are useful for monitoring of physical
conditions and passing the data gathered to the required location. They are like any
other system prone to failure due to limitation of resources. In this paper we address
fault tolerance concept in general, give analysis to the definition of fault tolerance
and terms related to it based on the system requirements. We explored redundancy
and touched upon fault tolerance in Wireless Sensor Networks. Topics covered
include redundancy in hardware, N- Modules Redundancy (NMR), and software
including N-version programming and check pointing. We also cover fault tolerance
in Wireless sensor networks including connectivity and coverage and multipath.

Keywords—fault tolerance, fault prevention, redundancy, dependability; connectivity,
coverage; multiple path

1 INTRODUCTION

All human-made systems are fault-prone. With each technology emerges, we cannot
predict if it will continue to work happily ever after or not. These technologies are
vulnerable to failure and it is hard to predict when a failure will happen. Human-made
systems are designed so as to minimize the occurrence of faults, yet it is understood that
faults are bound to occur caused by wear and tear or by some overlooked conditions,
design errors, or usage errors.

For most systems, the handling of faults in terms of diagnostic, repair, and maintenance
occurs offline. For example with the system out of operation and extrinsically, handled
outside of the system and not considered to be an intrinsic part of its functionality. This is
the case for most home appliances, and entertainment systems. A failure of such systems
IS an annoyance, but is generally neither life threatening nor safety critical, and the cost of
their being down or behaving erroneous is not prohibitive. On the other hand there are
many systems and applications where down-time is too prohibitive and incorrect behavior
carrying serious consequences.

With the increasing reliance on technology, the percentage of such systems is also on
the rise. For which it is critical to design them to be fault-tolerant, i.e., to be intrinsically
equipped to recognize the occurrence of faults, and react to them so that their behavior
remains if not correct, at least safe.
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This failure varies from mild failure that will not affect the functionality of the system
to a sever failure that could damage the being of the system. The existence of this failure
has inspired the researches to look for ways to survive. One of these ways is fault
tolerance. Fault tolerance for any system means enabling that system to continue working
in the presence of these faults, which requires understanding of possible faults, their
sources, their likelihood, and their consequences and cost if they are not mitigated. It also
requires an understanding of what constitutes a safe behavior in the context of the system
at hand as well as knowledge of mechanisms by which such safety can be provided.

There are two primary assumptions for any system: first, it is not fault free, faults will
happen sooner or later in the system, especially hardware, which will be worn out after
years of use. Second, not every fault results in a server failure. Given its importance, fault-
tolerance has been studied extensively in a variety of systems from those that are primarily
mechanical, electrical, electronic, or software, to the increasingly complex and hybrid
systems that have all aspects combined.

While some principles developed early on in the history of this field remained
invariant, other characteristics, methods, and approaches are more closely related to the
application domain and the technologies used and thus are still a highly researched topic.

This paper gives an understanding of fault tolerance from the system’s requirements
view of point. It also puts fault tolerance in clear point in the map of achieving dependable
system. We discussed fault and failures so that as threats to the dependable system and
offered fault tolerance as a mean to achieve it.

Moreover, we are interested in fault tolerance as it applies to sensor networks, and
possibly to sensor networks under malicious attack. We surveyed the field of fault
tolerance generally and fault tolerance in WSN specifically, we found that the key to fault
tolerance is redundancy. It can be achieved by adding copies of certain components or
alternatives that are not identical so that in the case of failure in one of them the system
will switch to the redundant component

This paper is divided as follows: In Section 2, we discuss fault tolerance to achieve
dependability. In Section 3, we explore redundancy to achieve fault tolerance. In Section
4, we talk about redundancy measures in WSN, coverage and connectivity, multiple
routing. In section 5, we touched upon fault prevention in WSN. We conclude our work in
Section 6.

1.2 Motivation of Fault Tolerance

Humans are not perfect, unexpected behavior could arise in any human-made system in
the future. If the probability of a fault occurrence in the system is zero, then there should
be no fault tolerance consideration. On the other hand we don’t want to reach that point of
when the system fails, but our goal is not to have them propagate into errors then finally
failures. It is important to comprehend the concept of fault tolerance before the designing
process of any system. It is essential to know where and when we can let go of faults, or if
the need of fault tolerance is needed.
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1.3 History of Fault Tolerance

The concept of fault tolerance emerged in the beginning of the 50’s, the first scientist to
design a fault tolerant computer SAPO was Antoion Svoboda, he designed it using relays
and a magnetic drum memory. The processor used triplication and voting (TMR), and the
memory implemented error detection with automatic retries when an error was detected.
The same team developed a second machine (EPOS) also contained comprehensive fault-
tolerance features. These features of these machines were motivated by the local
unavailability of reliable components.

Over the past 50 years, a number of fault-tolerant systems have been developed and
eventually, they separated into three distinct categories: 1) long-life, these machines last
long with no maintenance such as NASA space probes. 2) Ultra-dependable, real-time
computers, they require constant monitoring such as systems used to monitor nuclear
plant. 3) High-availability computers with a high amount of runtime which would be
under heavy use such as super computers used by insurance companies.

The way fault tolerance developed over the years was possible to create specific
hardware and software solutions from the ground up, but now chips contain complex,
highly integrated functions, and hardware and software must be crafted to meet a variety
of standards to be economically viable. This field is improving as new technologies are
developed and new applications arise, new fault-tolerance approaches are also needed.

1.4 System Requirements

When designing any system in general, there is no doubt that ultimate goal for this
system is to maintain working according to its requirements all the time. Before designing
any system, the system should go through different phases that are called the system
lifecycle. The first step is defining the requirements of the system. The requirements are
what the system should be doing, and what constrains it should operate under.

Requirements branch into two parts: functional requirements and non-functional
requirements. Functional requirements mean what the system should be doing, such as the
input and the output of the system, all the functionalities related to the system, and how
the service should be delivered. On the other hand, the non-functional requirements
represent the properties of the system, such as reliability, availability, fault tolerance, etc.
The non-functional requirements also cover the constraints on the system. Constrains on
the product, organizational constrains and other external constraints.

Constraints on the product would be derived from the user needs, such as the
acceptable failure rate, how fast it is, etc. Organizational constraints have to do with
organization policy and procedures like what language or design method to use. Finally,
there are constraints that come from external sources, such as ethical requirements: Is this
product acceptable to the public or not?. Legislative requirements: is the system within the
law boundaries such as privacy or safety requirements. These non-functional requirements
are very critical and application dependent. In some applications like medical related
applications, safety is considered awfully important. In real time applications, reliability is
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important. Other application related to aircrafts and space shuttles, fault tolerant is highly
required.

Fault tolerance is considered a non-functional requirement, and any non-functional
requirement should be verifiable. Instead of saying the system should be fault tolerant, we
say the system should be able to tolerate this number of failures, or this amount of time
between failures is acceptable. We should not confuse the non-functional requirement
with the overall goal of the system. There is no doubt that the ultimate goal when
designing any system is to maintain working according to its functional and non-
functional requirements. When it meets these requirements it is called a dependable
system.

2. ADEPENDABLE SYSTEM

The definition for a dependable system is different from one application to another. So
what is known to be a dependable system in a bank system is different than airspace
shuttle. Let’s take few examples:

In a bank system, it is important to the customer that the bank does not share the user’s
information with third parties. And that any information shared with the bank system is
not modified without the permission of that customer. So a dependable system in this case
should satisfy the condition of confidentiality and integrity. Availability is also as
important as the other two, some people cannot stand any delay in their bank transactions,
but it does not cause a catastrophic result in the end.

In monitoring systems in general, such as weather or traffic monitoring systems, it is
important to have correct information, so confidentiality and availability is not an issue
here, but integrity is important. Another example, when designing any medical tool, such
as robotic medical equipments all the focus is on the patient’s life. The system must not
harm or threat their lives. So safety is the main non-functional requirement.

The questions after these examples ar: what is a dependable system? And what is
dependability? And how is it related to fault tolerance? Over the past fifty years the means
to achieve dependable computing and communicating services have been developed. The
dependability of a system is the ability to avoid service failures that are more frequent and
more severe than is acceptable to the user(s) [11].

What is acceptable to each user and what is not vary, but all users agree on some
attributes of a dependable system. Considering different cases we can say that a
dependable system should satisfy one or more form the following attributes depends on
the type of the application and the environment this application works in:

e Auvailability: service should be there when it is needed.
e Reliability: continue to provide correct service.
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e Confidentiality: only authorized people should access the information.
e Integrity: cannot be modified without authorization.
e Safety: system contains no threats to its users.

e Maintainability: the ability to be easily repaired, airplanes, cars, are expensive so it not
realistic every time a car breaks down should be replaced by another one.

2.1 Threats to Dependability: Faults, Error, Failure

A threat will cause a violation to one or more of its required attribute. These threats
could be noticed. Others could be noticed without affecting the functionality of the
system. Other threats could be noticed and negatively affect not only the functionality of
the system but also violates the requirements of the system. There are three types of
threats, fault, error and failure. To comprehend the concept of fault tolerance it is
important to explain the difference between these three threats.

A threat starts out as fault, which is a physical defect that takes place in some parts of
the system. It could be a physical defect (hardware), or a software defect. It could be
accidentally made or purposefully forced into the system. No matter what the category of
this fault is, we need to contain these faults and not to have them propagate into something
bigger and even more dangerous.

Faults could be active or passive. An active fault could be noticed, such as dead battery
in a sensor. A passive fault couldn’t be noticed. A mistake or a bug in the code is a passive
fault. If a fault has emerged and was not taken care of, it might prorogate and affects other
parts of the system, so it is no longer a defect, it will become an error. Error is a noticed
phase that leads the system into a state of not doing things the right way. So a fault is
active when it causes an error, otherwise it is dormant. If errors propagate they lead to a
failure.

Fault=> Error = Failure

A failure is the deviation from correct service may assume different forms that are
called service failure modes. It is important to note that many errors do not reach the
system’s external state and cause a failure. So since a service is a sequence of the system’s
external states, a service failure means that at least one external state of the system
deviates from the correct service state. The deviation is called an error. An example of an
error is lost connection between two nodes due to the dead battery in one of them. If an
error propagates it leads to a failure. That is when the system starts to behave in a way that
not what it should be doing. Follow our example of the dead sensor node, the failure here
is not being able deliver the data from that dead node.
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Faults could occur during the phase of creating the system, they are called development
faults, but operational faults that occur during service delivery of the use phase. Faults are
classified into eight categories:

e The location of the faults with respect to the system boundary, internal faults that
originate inside the system boundary, but external faults that originate outside the
system boundary and then propagate errors into the system by interaction or
interference.

e The cause of the faults either natural faults that are caused by natural phenomena
without human intervention. Or human-made faults that result from human
actions.

e The dimension in which the faults originate either hardware (physical) faults that
originate in, or affect, hardware. Or software faults that affect software, i.e.,
programs or data.

e The objective of introducing the faults could be malicious faults that are
introduced by a human with the malicious objective of causing harm to the
system. Or it could be the opposite, non-malicious faults that are introduced
without a malicious objective.

e The intention of the human who caused the faults, deliberate faults that are the
result of a harmful decision or non-deliberate faults that are introduced without
awareness.

e The capacity of the human who introduced the faults accidental faults that are
introduced inadvertently or incompetence faults that result from lack of
professional competence by the authorized human, or from inadequacy of the
development organization.

e The temporal persistence of the fault, either permanent fault whose existence is
assumed to be continuous in time. Or transient faults whose presence is bounded
in time.

So, the existence of faults might or might not lead to a failure in the end. We should
have these faults under control and not have them end up in a system failure when repair is
harder or impossible. Failure starts off not meeting a functional requirement that results in
failing in one or more of the non-functional requirements. That leads us to definition of
fault tolerance is that to maintain the system working according to its non- functional
requirements even in the presence of functional faults.

2.2 Means to achieve dependability

The dependability in the system, eliminate the occurrences of the threats in the system
by predicting all the possible faults that are likely to happen. If we have faults under
control that means we can prevent system failures. The more faults we prevent the less
failures might occur. This step is called fault prevention. Fault prevention is to prevent the
occurrence or introduction of faults.

Another mean, is fault tolerance, which is to avoid service failures in the presence of
faults. It has things in common with fault prevention in the sense that they both should
know (predict) before hand what faults the system might face and provide some
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mechanism to avoid them. Fault tolerance concern is not only preventing faults from
happening but it also it assumes that these faults will actually happen and find solutions on
how the system will survive and continue working according to its goals without any
deteriorating in its performance of services it provides.

What comes after fault tolerance? Should the system continue working in the presence of
faults? Where is this fault going? The next step that comes after fault tolerance is fault
masking which means hiding faults and prevent them from resulting in errors. Finally,
fault isolation; this move the fault from system either manually or automatically. Every
mean of these is a topic of research on its own.

Redundancy is used to achieve dependability in the system at different levels, hardware,
software, and time redundancy:

2.2.1 Hardware Redundancy (NMR N Modular Redundancy)

Hardware redundancy is duplicated elements (hardware) that can work in parallel
usually this part is considered a critical one. Such as TMR Triple Modular Redundancy,
that has 3 duplications of a certain module then it uses a voting mechanism to decide the
output of the system.

—p VIodule 1

—p Nodule 2

L

® Module 3

Figure 1. Triple modular redundancy

In Figure 1, if one of these modules has a fault, the other two will have the same output
that should be considered the faulty one will be ignored. Triple is the minimum number of
modules to be used, it also has to be an odd number. The more number of duplications
indicates the more faults tolerant the system is, when the number of duplicated modules
increase, the reliability will also increase. In some fault sensitive system, such as space
shuttles, not only they duplicate certain modules but they also duplicate the voter. They
assume that the voter itself might have faults. In this case, the ending outputs should
match from all voters.

2.2.2 Software Redundancy

There are two types of redundancy in software, static software redundancy, by using N
versions of the software to execute one task. The other type is dynamic software
redundancy, which is through the creating of checkpoints that the system goes back to
after the state of fault. The difference between them is that in the static approach we don’t
need any error detection mechanism, whereas in dynamic we need error detection
mechanism.
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a) Static Software

That is called N- Version programming, so a single task will be executed many times
by N number of programs where N > 2. The idea here is to give the specifications for that
program to different N developers that will result in N versions. A majority voting is
performed on the result which makes it similar to hardware redundancy NMR. This
technique has two main drawbacks. First, it is expensive because each version is
developed by different developers. Second, N- version is expensive because each version
is developed by a different programming team independently, if the specifications that
they were given were flawed, the system will deal the N independently errors, which
makes its maintenance hard as well.

b) Dynamic Software redundancy

All approaches in dynamic redundancy depend on detecting the error first, then recover
from it and then move on. It is hard for software to redo any error that was detected, so the
solution is to create checkpoints at the beginning of a transaction. A transaction is a
collection of operations on state of an application. Two examples of dynamic software
redundancy, check-pointing is to take a snapshot of the software situation before it starts
the following transaction if and only if the previous transaction was completed without
any faults. This state is saved in a block called check pointing block. The system tries a
different alternative block of processing then tests again, if fails go through another
alterative processing block and so on. Once an error is detected the system moves back to
this saved stated in the check pointing block, this is called rollback, see Figure 2.
Backward error recovery, is the basic recovery strategy, the system rollback refers to the
state of recovering from a failure after repair.

Recovery Blocks is similar to N- version programming, but N versions of processing.
The difference is that here we don’t run them at the same time.

: Primary oK
e
Check point |— —»| Test |[—

Fail
- Alternative OK
Rollbackte |___, . —»| Test | —s
check point processing
l Fail
Roll back to oK
? check point - I
| Fail

Figure 2 Recovery blocks

works like this for a certain transaction, there is a check-pointing block that saves the
state of the system before it process this transaction, then a test to check for errors, if an
error was detected it rolls back to the saved state in the checkpoint block.

2.2.3 Time Redundancy

It refers to the repetition of a given computation a number of times and a comparison of
the results to determine if a discrepancy exist [18]. The discrepancy between the multiple
computations indicates a transient fault as in Figure 3. So a computation is done more than
one time with time difference without any voting here, but there a comparison between the
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results to determine if they are consistent. If there is inconstancy in the result, that
indicates a fault existence. Usually this scheme is useful if the fault is not permanent if it is
permanent then there is no need to continue computing and comparing.

Functional

Functional

Block

™| Elock

Output at
time ¢

Functional output
at time = At

Functional
Block

Error signal

Figure 3. time redundancy basic scheme

According to Figure 3 computation is first performed at time zusing the input data in
the functional block, then the result is saved in a register, the same data is used again to
repeat the computation in the functional block at time 7+ Az. the comparator will give an
error if the two results mismatch.

Another scheme in Figure 4 shows the two sets of resources represent space
redundancy and the sequential computations represent time redundancy. In the figure, the
top processing resources shows permanent fault, time redundancy is not capable of
tolerating it, but is adequate to tolerate the transient fault in the lower resource. This
scheme is appreciated for transient faults not for permanent ones.

A

Space

Computation |l Computation [t [EIUE

Resources

Ilnput

Trnsient Fault

m ComPUtation e

Resources

Sucess

Time >

Time in Time Qut

Figure 4. Time and Space Redundacy

3 FAULT TOLERANCE IN WIRELESS SENSORS NETWORKS

Sensor network are small devices that are deployed over the field of interest, each one
is consists of sensor batteries, processing unit and memory. These sensor nodes can be
used in different applications such as environmental monitoring, military applications and
health care applications and others. The resources for these sensor nodes are limited, the
most critical component is the node’s battery, once the battery dies the node dies, and
eventually the network dies. These nodes sense data and either communicate with other
nodes or directly to the base stations.
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Wireless sensor networks are fault prone because of the limited resources, and because
nodes are deployed in harsh environment they are vulnerable to different threats. Faults
are possible to happen and lead to life treating failure. For example physical damage to
the node itself, or delay in sending receiving the data, or the data itself is could be wrong.
To understand the type of faults that could happen, we categorized the faults in each of the
system layers as in Figure 5.

3.1 Classifications of fault in WSN

Each node consists of different components: Hardware level, software level, links for
communications, and others. Sensor nodes are cost sensitive and will not always be
designed using the highest quality components, they are also deployed in harsh
environments that make them prone to failure. To understand the type of faults that could
happen, we categorized the faults in each of the system layers as in Figure5
3.1.1 Node level

Each node consists of hardware and software components. The hardware is: sensors,
CPU, memory, and battery. And the software: routing protocol, Mac and other things.
Hardware failure will generally lead to software failure in the node. Low power level in a
node can give incorrect readings. The node as whole might fail if that node was in a
critical position such as if that nodes lies on the routing path to the sink.

| Application Level |

1T LA

| Sink Level |

1r

| Network Level |

1T

| Node Software Level |

1T

| Mode Hardware Level |_

Fault Prapagation

Figure 5 Fault Classification

3.1.2 Network level

The radio communication between nodes is also vulnerable. When these nodes
communicate wirelessly, two nodes might send their data at the same time which will end
up in losing or colliding of data. The main reason of collision is congestion, when
allowing sensing nodes to transfer as many packets as possible at same time, so packet
loss is the result of this congestion.

3.1.3 Sink level
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The sink or the base station is responsible for collecting all the data from the sensors.
This component could fail due to many reasons. It could be the wrong of the sink, it could
be the presence of bugs or other problems in the hardware or the software of the sink. Or it
could be that it is not possible to supply power to the sink permanently.

3.1.4 Application level

The malfunction nodes in the wireless sensor network, it does not perform the intended
operation according to user requirements, or it performs other operations like sending
incorrect information to the base station. Hence the faulty sensor node must be identified
and separated from being a communication node.

3.2 Classifications of Failures in WSN

These failures are results of the faults that happened in one on the above levels.
These failures could be either one of the followings:
e Crash failure: occurs when the service doesn’t respond to the request. It could be
because of message loss. Or physical damage that broke the network apart into
different disjoint components that the sink can longer communicate with.

e Time failure: if the application has a strict time interval, the node responds to a
request with possibly the correct value but response was received either too early or
too late.

e Incorrect value failure: generating an inaccurate value, by either a software
malfunction, corrupt message, or a malicious. This failure results in lack of accuracy
in the aggregated final value.

4. MEASURES OF REDUNDANCY IN WIRELESS SENSORS NETWORKS

We talked in general about redundancy as the main technique for fault tolerance. WSN
consist of one major component the node itself. It can also be provided with redundancy,
what kind of redundancy?

Each node has two ranges as in Figure 6:

e Sensing range Rs: a node can sense any point in the field that is located within this
range. That represents the sensing coverage.

e Communication Range Rc: A node can communicate with or any node that is
located within this range. Neighbors are nodes that are allocated within this
communication disk. A node is connected with its neighbors.
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Figure 6 Sensing Range Rs, and Communication Range Rc

Fault tolerance in WSNs is tightly dependent on node redundancy to maintain coverage
and connectivity. To explain redundancy in WSNs sees Figure 7 it is a snapshot of the
same area, one that captures the sensing disks, the other captures the network connectivity.

4.1 K-Connectivity (Neighboring Redundancy)

Connectivity refers to the fact that between any pair of nodes (n, n’) there is a sequence
No=n, N1, Ny, ... Nk=n’ such that the distance between any n;, nj+; is < R¢. In other words
the network is said to be K-connected if there are K number of disjoint paths from node u
to node v. Every node along this path can communicate with the next node if their
Euclidian distance less than its communication range.

We understand that having a K-connected network where K>2, if any node dies or any
link breaks between 2 nodes the network is still functioning because there is an alternative

path to the sink. The higher the K the more it provides routing redundancy, hence network
resilience.

4.2 K-Coverage (Node redundancy)

Sensor node redundancy provides a degree of sensing coverage same area. We say a
region is K covered if any point in that region is covered by at least K different sensing
disks. If any node dies, then for each spot there are K-1 other nodes will take its place and
sense that data instead of the dead node. When we have good coverage, K > 2, we
guarantee more accuracy and better quality of service (QoS).

A A

f |
_){T

o

1

/
’{— ,..-:t—
L

4 B
Figure 7 (A) Coverage, (B) Connectivity

If it is covered it should be also connected to guarantee that the sensed data is received
by the base station, otherwise what is the point of coverage if the nodes are not able to
connect. Many algorithms were proposed to obtain coverage by the predefined
replacement of the nodes in the field. See Figure 7 (A), optimal pattern to obtain coverage
by organizing the nodes in a lattice of equilateral triangles of side V3 Rs.
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The areas of coverage and connectivity are closely related. Much work has been done
to discuss the relationship between them. Each is necessary conditions for a functional
wireless sensor network. There are attempts have been made by researches to combine the
two into a single algorithm. If connectivity and coverage are both to achieve at same time
then, the optimal configuration depends on the relationship between Rs and R.. If the
communication range is equal to or larger than V3R, the optimal configuration for
coverage more than satisfies connectivity, as in Figure 7. An important principal to
consider is that if the communication range of the sensors is at least twice that of the
sensing range then coverage of an area implies connectivity, hence the network is covered
and connected. On the other hand, if the region is covered and Rc< 2Rs; then it is not
connected, there are protocols out there to achieve connectivity in this case.

4.3 Multiple Routing

Multiple paths have been used to provide load balance to the network, and to add rout
redundancy which improve the reliability of data delivery. Three different approaches are
discussed that utilize multipath routing.

4.3.1 Meshed multipath

Meshed multipath such as GRAB[10] sensor node forwards a data packet to several
neighbors as long as the total power consumed by that packet is still within a certain given
budget. The number of neighbors to which an under-budget packet is forwarded is static.
Mesh is more reliable, even it may cause some delay in data delivery, and it works well in
highly dense networks.

Figure 8 Meshed Multipath

4.3.2 Disjoined multipath

Disjoint paths share the same source and sink but none of the intermediate nodes, one
primary path and one or more alternative paths. It is best used when the topology is known
in the network; it has less delayed than mesh, but less reliable. Because any node along
this path is important if it fails we lose the whole line of connection.

Figure 9 Disjointed Multipath
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4.3.3 Braided multipath

As the name suggests it looks braided. It is partially disjoined paths then they joined
again, for each node on the primary path find an alternate path does not including that
node. There is not a lot of overhead and latency will be added to the primary path. It works
well when only one node or few nodes fails, but when the nodes along the whole primary
path fail, a new path discovery should be found.

In ad-hoc networks, multipath routing is used to rapidly find alternate paths between
source and destination, and so guarantee a better robustness of the network. From the
application’s perspective, a desirable goal of multipath routing is to deliver data along the
primary path. To recover from failure of this primary path, without flooding the network
for rediscovery, multipath routing constructs and maintains a small number of alternative
paths.

Figure 10 Braided Multipath

Which multipath is more reliable? The disjoint network in Figure 9 has two mini-paths
(s; a; b; c; t). The mesh network in Figure 8 has eight mini-paths (s; a; b; ), (s; a; b; h;
t),(s; a; g; h; t),(s; a; g; c; t) In general by adding an operational minipath to a graph, the
graph reliability increases.

Reliability can be calculated using this equation:
Rel(G) = ¥, Prob[D;] .. 1)

let Ps..... Py be the enumeration of min-paths and let the event E; be the event that path
Pjis operational. The Boolean formulation of reliability uses the events D; = E;and

Di=E NE,NE, ...0Ei_; NE; )
adding a minpath never decreases the reliability hence:

Rel (meshed)> Rel (disjoined)

Each routing has its own benefits, the disjoin paths can achieve traffic balancing and
bandwidth increase with intelligent path selection; the braided multipath can gain
reliability and robustness

Disjoint multipath traffic can be many times faster than braided multipath routing.
Thus, disjoint multipath can send r copies of the same packet in sequence.

In [10] they compared all three; they found that Packet error probability of a single path
(no redundancy) is the highest among all. Followed by disjoint multipath, and then braided
multipath has the least packet function of channel/link error rate.
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5. FAULT PREVENTION TECHNIQUES IN WSN

The following section is not about fault tolerance techniques, rather more of fault
prevention techniques. People confuse the two concepts with each other. Fault tolerance
techniques use redundancy in different forms. But we need techniques to prevent faults
from happenings.

Monitoring is important to have eyes open on the area where failure might happen.
Monitoring the network either by the base station, or self node collaborated monitoring is
important to capture any abnormal behavior in the network and probably deal with it
before it causes more damage. It could be by sending constantly reports about the behavior
of the network, or reporting could be only when something suspicious happens. What is it
that we need to monitor?

5.1 Monitoring Node Status

The status of the nodes could be the physical status of the node, so it will be looking for
damaged or crashed nodes [5]. Or it could be watching for the most scare resource,
residual power. Network reliability and forecasting network behavior is one king of
energy management and forecasting. The dynamic network behavior can be captured
effectively by the energy management and forecasting scheme. This can be useful for
predicting network failures and taking preventive actions accordingly. This way, the
reliability of the network can be maintained within dynamic sensor network environment.
Monitoring the residual power could be done using many techniques:

An eScan in[6] depicts an aggregated picture of the remaining energy levels for
different regions in a sensor field. Instead of the detailed information of residual energy at
individual sensors, this scan provides an abstracted view of energy resource distribution.
An eScan can help users to decide where new sensor nodes be deployed to avoid energy
depletion.

Forecasting-based Monitoring and Tomography (FMT) in [7] is energy monitoring
mechanism for resource constrained sensor networks. Instead of collecting the raw
available energy information from individual sensor nodes periodically, it applies energy
forecasting and network aggregation mechanisms to capture the network energy
tomography map with minimum energy consumption to continuously update the energy
information with minimum energy waste. Each sensor node sends its available energy and
its forecasted energy dissipation rate to the monitoring node. This way, energy information
is transmitted to the monitoring node only when there is a variation in the network
behavior. Instead of collecting the raw energy information from individual nodes like
eScan [6], FMT apply energy forecasting and network aggregation mechanisms together
in order to further reduce the monitoring costs in the network.

5.2 Monitoring Link Quality
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Link quality estimation in WSN is more challenging than any other network, because
of the use of low power radios are more prone to failures. There are different estimators
resented and evaluated in[8] some of them are :

PRR(Packer Reception Rate): measure the average of successfully at the receiver side
using this :

PRR = Number of received packets 3)

Number of sent packets

Some statistical data is collected to determine the lost packet such as the sequence
number for each packet.
RNP( Required Number of Packets Transmitted): counts the average number of
packets transmission/ retransmission. The sender determines the successful received
packets as the number of acknowledged packets

RNP = Number of transmitted and retransmitted packets 1 4)
Number of successfully received packets

ETX (Expected transmission count): an approximate number of transmitted and
retransmitted packets required before a successful reception (RNP):

ETX = 1 (5)
PRR forward * PRR backward

where PRR forward uplink quality from sender to receiver, and PRR backward is
downlink quality from receiver to sender. The combination of both gives an estimation of
the bidirectional link quality.

Four-bit: a hybrids estimator uses passive and active monitoring initiated at the sender
side.

5.3 Monitoring congestion

Network congestion occurs when a link or node is carrying so much data that its quality
of service deteriorates. That results in delay, packet loss or the blocking of new
connections. To avoided congestion from happening there are different congestion control
mechanisms such:

CODA (Congestion Detection and Avoidance) in Sensor Networks [9] is an energy
efficient scheme that involves three mechanisms, Congestion detection, Open-loop hop-
by-hop backpressure and Closed-loop multi-source regulation. It is based on sampling
scheme of local channel loading at appropriate rate and form accurate estimation of
congestion, if congestion detected nodes send signals to the neighbors.

5. CONCLUSION

In this paper we present a clear overview on fault tolerance techniques in general, and
then we focused on WSN in specific. Some systems are critical such as health related
systems which require high resiliency against failures. Fault tolerance is all about
Redundancy in the system component, when one module fails we switch over to the
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redundant one. In general fault tolerance techniques are categorized as hardware such as
TMR or software such as N-version programming.

In Wireless sensor networks, it is important of the network to continue functioning
and provide the service needed. The need for fault tolerance is important because
maintenance is not an option. It could be achieved by using K- connectivity, K coverage,
and multipath. These techniques make the network more resilient. We also touched upon
fault prevention in WSN, by monitoring the health of the node, links, power level, and
congestion.

Finally, fault tolerance is strongly related to security, it deals with all threats that might
attack the system including intruders from humans, who attack the system exploiting any
weak hole in it. But fault tolerance does not look at who caused the fault, it focuses on
how continue working with fault with minimum casualties.
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