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New connections on the fiber-bundle of

generalized statistical manifolds

A. Gbaguidi Amoussou, F. Djibril Moussa, C. Ogouyandjou, M. A. Diop

Abstract. In this paper we construct a family of α-connections on a
fiber-bundle of a generalized statistical manifold. We prove that the ex-
ponential and mixture connections are curvature-free and we investigate
the associated parallel transport.

M.S.C. 2010: 53C05, 53C21, 55R10.
Key words: Riemanian manifold; generalized statistical manifold; fiber-bundle;
α-connection; parallel transport.

1 Introduction

Information geometry investigates the differential-geometric structure of statistical
models and has many applications in statistical inference or machine learning for ex-
ample (see [4]). Since the seminal work of Rao[14] where Fisher information is viewed
as a Riemannian metric on a probability distributions space, statistical manifolds
have been widely studied. The Fisher information metric on statistical manifold is
related to the Kullback-Leibler divergence which is a measure of dissimilarity between
two probability distributions. Considering a family of α-divergences, Amari[2] pro-
posed a family of α-connections on statistical manifolds. To elucidate the structures
and properties of estimating functions, Amari and Kumon[3] constructed a family of
α-connections on Hilbert bundle of statistical manifold, endowed with the Fisher in-
formation metric. Vigelis et al.[17] introduced a new metric and α-connections using
u0-mappings (or φ-functions), which generalize Fisher information metric and Amari’s
α-connections. The obtained geometric structure is called a generalized statistical
manifold. Recently, de Andrade et al.[5] investigated the mixture and exponential
arcs on generalized statistical manifold.

In this paper, we extend the results of Vigelis et al.[17] by defining a new family
of α-connections on Hilbert bundle of generalized statistical manifold. We prove that
the curvatures of our proposed (1)-connection and (−1)-connection vanish everywhere.
Moreover, we give the α-parallel transport associated with α-connection for α = ±1.

∗BSG Proceedings 26. The International Conference ”Differential Geometry - Dynamical Systems”
DGDS-2018, 30 August - 2 September 2018, Mangalia-Romania, pp. 23-32.
c⃝ Balkan Society of Geometers, Geometry Balkan Press 2018.
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The rest of the paper is organized as follows. In section 2, we review the relevant
concepts related to generalized statistical manifold. In section 3 we introduce our
new α-connection on Hilbert bundle of generalized statistical manifold and prove the
mains results.

2 Generalized statistical manifolds and α-connections

In this section, we recall some useful definitions and properties related to generalized
statistic manifolds (see[17, 10, 16]). Let (χ,Σ, µ) be a measure space and Pµ = {p ∈
L0 : p > 0,

∫
χ
p(x; θ)dµ(x) = 1} where L0 denotes the set of all real-valued, measurable

functions on χ.

Definition 2.1. (see[17]) Let u0 : χ → (0,∞) be a measurable function. A function
ϕ : R → (0,∞) is said to be a u0-mapping if :

• ϕ is convex,

• limx→−∞ ϕ(x) = 0 and limx→∞ ϕ(x) = ∞,

• for all measurable function c : χ → R satisfying
∫
χ
ϕ(c(x))dµ(x) = 1, we have∫

χ
ϕ(c(x) + λu0(x))dµ(x) < ∞, for all λ > 0.

Example 2.2. The function ϕ defined by

ϕ(x) = exp(ax+ b), a ∈ (0;∞), b ∈ R, ∀x ∈ R

is a 1χ-mapping.

Example 2.3. (see[16]) The Kaniadakis’κ-exponential expκ : R → (0,∞) defined by

• for κ = 0, expκ is the usual exponential map,

• for κ ∈ [−1, 0[∪]0, 1] , expκ(x) = (κx+
√
1 + κ2x2)1/κ

is a u0-mapping where u0 satisfies
∫
χ
expκ(u0)dµ < +∞.

Definition 2.4. (see [17]) Let ϕ be a smooth u0-mapping. A generalized statistical
manifold is a family of probability distributions

M = {p(·; θ) : θ ∈ Θ} ⊂ Pµ

such that:

1. Θ is an open and connected set in Rn.

2. Each p(., θ) is given in terms of θ ∈ Θ by a one to one mapping.

3. Every function p(x; ·) is smooth for all x and the operations of integration
with respect to µ and differentiation with respect to θi (i.e. ∂/∂θi) are always
commutative.

4. The support of p(·, θ) does not depend on θ for all θ ∈ Θ.
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5. The matrix g = (gij), which is defined by

gij = −E′
θ

[
∂2fθ
∂θi∂θj

]

is positive definite at each θ ∈ Θ, where fθ(·) = ϕ−1(p(·; θ)) and

(2.1) E′
θ [·] =

∫
χ
(·)ϕ(1)(fθ)dµ∫

χ
u0ϕ(1)(fθ)dµ

.

gij is invariant under reparametrization. When ϕ is the usual exponential function
and u0 = 1, g is the Fisher information matrix.

Lemma 2.1. [17] For i, j ∈ {1, 2, · · · } and θ ∈ M ,

E′
θ

[
∂fθ
∂θi

]
= 0 and gij = E′′

θ

[
∂fθ
∂θi

∂fθ
∂θj

]
,

where

(2.2) E′′
θ [·] =

∫
χ
(·)ϕ(2)(fθ)dµ∫

χ
u0ϕ(1)(fθ)dµ

.

Let ∂i = ∂/∂θi be the tangent vector of the i-th coordinate curve θi at the point
θ. Then, n such tangent vectors ∂i, i = 1, · · · , n, span the tangent space ⊤θM at the
point θ of the manifold M . Any tangent vector A ∈ ⊤θM is a linear combination of
the basis vectors ∂i,

A = Ai∂i,

where Ai are the components of vector A and Einstein’s summation convention is
assumed throughout the paper. The tangent space ⊤θM is a linearized version of
a small neighborhood of θ in M and an infinitesimal vector dθ = dθi∂i denotes the
vector connecting two neighboring points θ and θ+dθ or two neighboring distributions
p(·, θ) and p(·, θ+dθ). Let us introduce a metric in the tangent space ⊤θM . It can be
done by defining the inner product of two basis vectors ∂i and ∂j . Usually the vector
∂i ∈ ⊤θM is represented by a function ∂ifθ and the metric is defined by

(2.3) gij(θ) = g(∂i, ∂j) = ⟨∂ifθ, ∂jfθ⟩ = E′′
θ [∂ifθ∂jfθ] , ∀θ ∈ M

The α-covariant derivative (see [17]) of the basis vector ∂j in the direction ∂i is

(2.4) ⟨∇(α)
∂i

∂j , ∂k⟩ = Γ
(α)
ij,k,

where

Γ
(α)
ij,k =

1 + α

2
Γ
(1)
ij,k +

1− α

2
Γ
(−1)
ij,k ,

Γ
(1)
ij,k = E′′

θ

[
∂2fθ
∂θi∂θj

∂fθ
∂θk

]
− E′

θ

[
∂2fθ
∂θi∂θj

]
E′′
θ

[
u0

∂fθ
∂θk

]
,
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Γ
(−1)
ij,k = E′′

θ

[
∂2fθ
∂θi∂θj

∂fθ
∂θk

]
+ E′′′

θ

[
∂fθ
∂θi

∂fθ
∂θj

∂fθ
∂θk

]
−E′′

θ

[
∂fθ
∂θj

∂fθ
∂θk

]
E′′
θ

[
u0

∂fθ
∂θi

]
− E′′

θ

[
∂fθ
∂θi

∂fθ
∂θk

]
E′′
θ

[
u0

∂fθ
∂θj

]
and

E′′′
θ [·] =

∫
χ
(·)ϕ(3)(fθ)dµ∫

χ
u0ϕ(1)(fθ)dµ

.

3 The Hilbert bundle of a generalized statistical
manifold

3.1 Hilbert bundle

Let Υ be the set of µ-integrable and smooth functions r defined from χ to R. Let ϕ
be a smooth and bijective u0-mapping ϕ : R → (0,∞) such that ∀(θ, x) ∈ M× (0,∞),
ϕ(1)(x) ̸= 0 and M = {p( · ; θ); θ = (θ1, · · · , θn) ∈ Θ ⊆ Rn} a generalized statistical
manifold endowed with the Riemannian metric g defined by (2.3) and parametrized
by θ = (θ1, · · · , θn). To each point θ ∈ M , we associate a linear space Hθ defined by

Hθ = {r ∈ Υ : E′
θ[r] = 0,E′′

θ [r
2] < +∞},

where E′
θ and E′′

θ are respectively defined by relations (2.1) and (2.2). Throughout

this paper we assume that E′′
θ

[
(∂ifθ)

2
]
< ∞ and for all (θ, θ′) ∈ M2, r ∈ Hθ

E′′
θ [r

2] < +∞ =⇒ E′′
θ

[
r2

(
ϕ′ (fθ)

ϕ′ (fθ′)

)2
]
< +∞.

For each θ ∈ M and r, s ∈ Hθ we set

(3.1) ⟨r, s⟩θ := E′′
θ [rs].

Proposition 3.1. For all θ ∈ M , ⟨·, ·⟩θ is an inner product and (Hθ, ⟨·, ·⟩θ) is a
Hilbert space.

Proof. Let θ ∈ M . Hθ is a vector space and the map ⟨·, ·⟩θ defined by (3.1) is a positive
definite bilinear form, then it is a inner product on Hθ. Using the Walter’s proof (see
[18]) of completeness of the set of measurable and square integrable functions, one
proves the completeness of Hθ. �

Since the tangent vectors ∂ifθ(x), which span ⊤θM , satisfy E′
θ[∂ifθ] = 0 and

E′′
θ [(∂ifθ)

2] < +∞, they belong to Hθ. Indeed, the tangent space ⊤θM of M at θ is a
linear subspace of Hθ, and the inner product defined in ⊤θM is compatible with that
in Hθ. Let Nθ be the orthogonal complement of ⊤θM in Hθ. Then, Hθ is decomposed
into the direct sum

Hθ = ⊤θM ⊕Nθ.
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The aggregate of all Hθ’s attached to every θ ∈ M with a suitable topology,

H = ∪θ∈MHθ,

is called the fiber-bundle with base space M . Since the fiber space is a Hilbert space,
it is called a Hilbert bundle of M . It should be noted that Hθ and Hθ′ are different
Hilbert spaces when θ ̸= θ′.

Hence it is convenient to establish a one-to-one correspondence between Hθ and
Hθ′ , when θ and θ′ are neighboring points in M . When the correspondence is affine,
it is called an affine connection. Let us assume that a vector r ∈ Hθ at θ corresponds
to r + dr ∈ Hθ+dθ at a neighboring points θ + dθ, where d denotes infinitesimally
small change.

Lemma 3.2. Let θ ∈ M and r ∈ Hθ. Then

E′
θ[dr] = −E′′

θ [∂ifθr]dθ
i + o (∥dθ∥) .

Proof. Let θ ∈ M and r ∈ Hθ. Then r+ dr ∈ Hθ+dθ. Set Φx(θ) = ϕ(1)(fθ(x)), x ∈ χ.
The function Φx is differentiable on Θ. Then by Taylor expansion of the function
θ 7→ Φx(θ + dθ) we obtain

Φx(θ + dθ) = Φx(θ) + dθΦx(dθ) + o(∥dθ∥)

where dθΦx denotes the differential of Φx at θ. Thus

r + dr ∈ Hθ+dθ ⇒ E′
θ+dθ[r + dr] = 0

⇒
∫
χ

[r(x) + dr(x)]Φx(θ + dθ)dµ(x) = 0

⇒
∫
χ

[r(x) + dr(x)] (Φx(θ) + dθΦx(dθ) + o(∥dθ∥)) dµ(x) = 0

⇒ E′
θ[dr] + E′′

θ [r∂ifθ]dθ
i

+o(∥dθ∥)
∫
χ

[r(x) + dr(x)]dµ(x) = 0.(3.2)

Using
∫
χ
|r(x) + dr(x)|dµ(x) < ∞ and (3.2) we deduce E′

θ[dr] = −E′′
θ [∂ifθr]dθ

i +

o (∥dθ∥) . �

Next, we construct the α-connections on Hilbert bundle.

3.2 α-connections on Hilbert bundles

Given r ∈ Hθ, differentiating the identity E′
θ[r] = 0 with respect to θ, we have

E′
θ[∂ir] = −E′′

θ [∂ifθr], E′[r] = E′
θ[∂ifθ] = 0. Set

dr =
1 + α

2
E′
θ[∂ir]u0dθ

i − 1− α

2

[
ϕ(2)(fθ)

ϕ(1)(fθ)
∂ifθr − E′′

θ [u0∂ifθ]r

]
dθi.
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We have

E′
θ[dr] = E′

[
1 + α

2
E′
θ[∂ir]u0dθ

i − 1− α

2

ϕ(2)(fθ)

ϕ(1)(fθ)
∂ifθrdθ

i

]
=

1 + α

2
E′
θ[∂ir]dθ

i − 1− α

2
E′

[
ϕ(2)(fθ)

ϕ(1)(fθ)
∂ifθrdθ

i

]
=

1 + α

2
E′
θ[∂ir]dθ

i − 1− α

2
E′′ [∂ifθr] dθ

i(3.3)

= −E′′ [∂ifθr] dθ
i.

The α-connection is given by the following α-covariant derivative ∇̄(α). Let r be
a vector field, which attaches a vector r( · , θ) to every point θ ∈ M . Then, the rate
of the intrinsic change of the vector r( · , θ) as θ changes in the direction ∂i is given
by the α-covariant derivative:

(3.4) ∇̄(α)
∂i

r = ∂ir −
1 + α

2
E′
θ[∂ir]u0 +

1− α

2

[
ϕ(2)(fθ)

ϕ(1)(fθ)
∂ifθr − E′′

θ [u0∂ifθ]r

]
.

This is a generalization of the α-connection studied by Amari[1]. We have E′
θ[∇̄

(α)
∂i

r] =
0 because of the identity ∂iE′

θ[r] = E′
θ[∂ir] +E′′

θ [∂ifθr]. The α-covariant derivative in
the direction A = Ai∂i ∈ ⊤θM is given by

∇̄(α)
A r = Ai∇̄(α)

∂i
r.

The 1-connection is called the exponential connection and the −1-connection is called
the mixture connection.

For each point θ ∈ M , the tangent space ⊤θM is a subset of the Hilbert space
Hθ. Hence the tangent bundle of M ,

⊤M = ∪θ∈M⊤θM,

is a subset of H. We can define an affine connection in ⊤M by introducing an affine
correspondence between ⊤θM and ⊤θ′M for neighboring points θ and θ′.

An affine connection given such that r ∈ Hθ corresponds to r + dr ∈ Hθ+dθ,
induces an affine connection in ⊤θM such that r ∈ ⊤θM ⊂ Hθ corresponds to the
orthogonal projection of r + dr ∈ Hθ+dθ onto ⊤θ+dθM .

3.3 Parallel transport on Hilbert bundles

We start this subsection by the following definition.

Definition 3.1. Let c = {c(t), t ∈ [0, 1]} be a curve in M . A vector field r( · , t) ∈
Hc(t) defined along the curve c is said to be α-parallel, when

(3.5) ∇̄(α)
ċ r = ṙ − 1 + α

2
E′
c[ṙ]u0 +

1− α

2

[
ϕ(2)(fc)

ϕ(1)(fc)
ḟcr − E′′

c [u0ḟc]r

]
= 0,

where ṙ denotes ∂r/∂t, etc.
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Definition 3.2. A vector r1(·) ∈ Hθ1 is the α-parallel transport of r0(·) ∈ Hθ0 along
a curve c = {c(t), t ∈ [0, 1]} connecting θ0 = c(0) and θ1 = c(1), when r0(·) = r(·, 0)
and r1(·) = r(·, 1) in the solution r(·, ·) of (3.5).

Generally, the parallel transport along a curve c connecting θ to θ′ depends on on
c.

Theorem 3.3. (see [12]) For an affine connection, parallel transport is independent
of the path if and only if the curvature tensor vanishes.

Now, we investigate the e- and m-parallel transport operators from Hθ to Hθ′ , for
(θ, θ′) ∈ M2. Then we can prove the following important theorem.

Theorem 3.4. Let (e)πθ′

θ and (m)πθ′

θ be the e- and m-parallel transport operators
from Hθ to Hθ′ . Then

(e)πθ′

θ r(x) = r(x)− E′
θ′ [r]u0(x),

(m)πθ′

θ r(x) =
r(x)ϕ(1)(fθ(x))

∫
χ
u0ϕ

(1)(fθ′)dµ

ϕ(1)(fθ′(x))
∫
χ
u0ϕ(1)(fθ)dµ

.

Proof. Let c = {c(t), t ∈ [0, 1]} be a curve connecting two points θ = c(0) and
θ′ = c(1). Let r(α)(x, t) be an α-parallel transport vector defined along the curve c.
Then, it satisfies (3.5). When α = 1, it is reduced to

(3.6)
ṙ(e)(x, t)

u0(x)
= E′

c(t)

[
ṙ(e)(·, t)

]
.

Since the right-hand side

E′
c(t)

[
ṙ(e)(·, t)

]
=

∫
χ
ṙ(e)(x, t)ϕ(1)

(
fc(t)(x)

)
dµ(x)∫

χ
u0(x)ϕ(1)

(
fc(t)(x)

)
dµ(x)

of (3.6) does not depend on x, its solution (with the initial condition r(x) = r(e)(x, 0))
is given by

r(e)(x, t) = r(x) + a(t)u0(x)

where
a(t) = −E′

c(t) [r] .

Then
(e)πθ′

θ r(x) = r(x)− E′
θ′ [r]u0(x).

When α = −1, (3.5) is reduced to

ṙ(m)(x, t) +

{
ϕ(2)(fc(t)(x))

ϕ(1)(fc(t)(x))
ḟc(t)(x)− E′′

c(t)[u0ḟc(t)]

}
r(m)(x, t) = 0.

The solution is

r(m)(x, t) = k(x)

∫
χ
u0ϕ

(1)(fc(t)(x))dµ

ϕ(1)(fc(t)(x))
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where k(x) = r(x)ϕ(1)(fθ(x))∫
χ
u0ϕ(1)(fθ(x))dµ(x)

. Then

(m)πθ′

θ r(x) =
r(x)ϕ(1)(fθ(x))

∫
χ
u0ϕ

(1)(fθ′)dµ

ϕ(1)(fθ′(x))
∫
χ
u0ϕ(1)(fθ)dµ

.

�

As consequence of the two previous theorems, we get the following result.

Corollary 3.5. The exponential ∇̄(1) and mixture connection ∇̄(−1) are curvature
free.

Lemma 3.6. We assume that ∀x ∈ χ, ϕ(2)(x) > 0. If there exists a real constant k
such that

(3.7) ϕ(2) (fθ) = ϕ(1) (fθ)

∫
χ

u0ϕ
(1) (fθ) dµ+ k,

then

(3.8) E′′′
θ [∂ifθ∂jfθ∂kfθ] = E′′

θ

[
∂ifθ∂kfθ

(
ϕ(2)(fθ)

ϕ(1)(fθ)
∂jfθ + E′′

θ (u0∂jfθ)

)]
.

Proof. Let ϕ be a smooth and bijective u0-mapping such that ∀(θ, x) ∈ M × (0,∞),
ϕ(1)(x) ̸= 0 , ϕ(2)(x) > 0 and ϕ satisfies (3.7). Let (i, j, k) ∈ {1, 2, · · · , n}3.

(3.7) ⇒ ∂jfθϕ
(3) (fθ) = ∂jfθϕ

(2) (fθ)

∫
χ

u0ϕ
(1) (fθ) dµ

+ϕ(1) (fθ)

∫
χ

u0∂jfθϕ
(2) (fθ) dµ

⇒ ∂jfθϕ
(3) (fθ)

ϕ(2) (fθ)
= ∂jfθ

∫
χ

u0ϕ
(1) (fθ) dµ

+
ϕ(1) (fθ)

ϕ(2) (fθ)

∫
χ

u0∂jfθϕ
(2) (fθ) dµ

⇒ ∂jfθϕ
(3) (fθ)

ϕ(2) (fθ)
=

∂jfθϕ
(2) (fθ)

ϕ(1) (fθ)

+
ϕ(1) (fθ)

ϕ(2) (fθ)

∫
χ

u0∂jfθϕ
(2) (fθ) dµ

⇒ ∂ifθ∂kfθ
∂jfθϕ

(3) (fθ)

ϕ(2) (fθ)
= ∂ifθ∂kfθ

[
∂jfθϕ

(2) (fθ)

ϕ(1) (fθ)

+
ϕ(1) (fθ)

ϕ(2) (fθ)

∫
χ

u0∂jfθϕ
(2) (fθ) dµ

]
.(3.9)

By taking the expectation of (3.9), we get the relation (3.8). �

In the following theorem, we show that with a sufficient and necessary condition
on ϕ, the restriction to ⊤M of the family of α-connections (3.4) of H is exactly the
family of α-connections (2.4) of ⊤M given by Rui et al.[17]. Since the geometry of
M is indeed that of ⊤M , our α-geometry of H is an extension of that of M .
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Theorem 3.7. For all i, j and k in {1, 2, · · · , n} and θ ∈ M ,

g
(
∇̄(α)

∂i
∂j , ∂k

)
= Γ

(α)
ij,k,

if and only if ϕ satisfies

E′′′
θ [∂ifθ∂jfθ∂kfθ] = E′′

θ

[
∂ifθ∂kfθ

(
ϕ(2)(fθ)

ϕ(1)(fθ)
∂jfθ + E′′

θ (u0∂jfθ)

)]
,

where Γ
(α)
ij,k is defined by relation (2.4).

Proof. Let i, j and k in {1, 2, · · · , n}. We have

g
(
∇̄(α)

∂i
∂j , ∂k

)
=

⟨
∇̄(α)

∂ifθ
∂jfθ, ∂kfθ

⟩
θ

= ⟨∂i∂jfθ, ∂kfθ⟩θ −
1 + α

2
E′
θ[∂ifθ∂jfθ] ⟨u0, ∂kfθ⟩θ

+
1− α

2

⟨
ϕ(2)(fθ)

ϕ(1)(fθ)
∂ifθ∂jfθ, ∂kfθ

⟩
θ

−1− α

2

[
E′′
θ [u0∂ifθ] ⟨∂jfθ, ∂kfθ⟩θ

]
= E′′

θ [∂i∂jfθ∂kfθ]−
1 + α

2
E′
θ[∂ifθ∂jfθ]E′′

θ [u0∂kfθ]

+
1− α

2
E′′
θ

[
ϕ(2)(fθ)

ϕ(1)(fθ)
∂ifθ∂jfθ∂kfθ

]
−1− α

2
{E′′

θ [u0∂ifθ]E′′
θ [∂jfθ∂kfθ]} .

We know that E′′
θ [∂i∂jfθ∂kfθ] =

1+α
2 E′′

θ [∂i∂jfθ∂kfθ] +
1−α
2 E′′

θ [∂i∂jfθ∂kfθ],

E′′′
θ [∂ifθ∂jfθ∂kfθ] = E′′

θ

[
ϕ(2)(fθ)

ϕ(1)(fθ)
∂ifθ∂jfθ∂kfθ

]
+E′′

θ [∂ifθ∂kfθ]E′′
θ [u0∂jfθ] .

Then one has g
(
∇̄(α)

∂i
∂j , ∂k

)
= 1+α

2 Γ
(1)
ij,k + 1−α

2 Γ
(−1)
ij,k = Γ

(α)
ij,k. �

References

[1] S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in
Statist. 28, Springer, New York, 1985.

[2] S. Amari, Information Geometry and Its Applications, Applied Mathematical
Sciences Series 194, Springer, Berlin/Heidelberg, 2016.

[3] S. Amari and M. Kumon, Estimation in the presence of infinitely many nuis-
sance parameters-geometry of estimating functions, The Annals of Statistics, 16,
3 (1988), 1044-1068.

[4] S. Amari, H. Nagaka, Methods of Information Geometry, Translation of Mathe-
matical Monographs 191, 1993.



32 A. Gbaguidi Amoussou, F. Djibril Moussa, C. Ogouyandjou, M. A. Diop

[5] L.H.F. de Andrade, L.J. Vieira, R.F. Vigelis, C.C. Cavalcante, Mixture and ex-
ponential arcs on generalized statistical manifold, Entropy, 20(3) (2018), 147.

[6] W. M. Boothby, An introduction to Differentiable Manifolds and Riemannian
Geometry, Academic Press, New York, 1975.

[7] M. P. Do Carmo, Riemannian Geometry, Birkhauser Inc., Boston, 1992.
[8] M. Do Carmo, Geometria Riemaniana. Proyecto Euclides, IMPA, 2nd edition,

1988.
[9] H. Gauchman, Connection colligations on Hilbert bundles, Integral Equations

and Operator Theory 6 (1983), 31-58.
[10] H. Ishi, Explicit formula of Koszul-Vinberg characteristic functions for a wide

class of regular convex cones, Entropy 18 (11), 383, 2016.
[11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Wiley-

Interscience, 1963.
[12] S. Norbert, General Relativity, Graduate Texts in Physics, Springer, 2nd ed,

2013.
[13] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171, 2nd

ed., Springer, New York, 2006.
[14] C.R. Rao, Information and accuracy attainable in the estimation of statistical

parameter, Bull. Calcutta. Math. Soc. 37 (1945), 81-91.
[15] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs 149,

American Mathematical Society, 2015.
[16] D. de Souza, R. F. Vigelis, C. C. Cavalcante, Geometry induced by a generaliza-

tion of Renyi divergence, Entropy 18(11) (2016), 407.
[17] R.F. Vigelis, D. C. de Souza, C.C. Cavalcante, New metric and connections in

statistical manifolds, Proc. of the Int. Conf. on Geometric Sci. of Information,
Vol. 9389, Springer, Berlin, 2015; 222-229.

[18] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, 1976.

Authors’ address:

Amour T. Gbaguidi Amoussou
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Faculté des Sciences et Techniques (FAST),
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