See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/335568432

New connections on the fiber-bundle of generalized statistical manifolds

Article • September 2019

Some of the authors of this publication are also working on these related projects:

Project A Skorohod problem driven by Clarke subdifferential and applications to Stochastic Integrodifferential equations View projectOptimal Control project View project

New connections on the fiber-bundle of generalized statistical manifolds

A. Gbaguidi Amoussou, F. Djibril Moussa, C. Ogouyandjou, M. A. Diop

Abstract

In this paper we construct a family of α-connections on a fiber-bundle of a generalized statistical manifold. We prove that the exponential and mixture connections are curvature-free and we investigate the associated parallel transport.

M.S.C. 2010: 53C05, 53C21, 55R10.

Key words: Riemanian manifold; generalized statistical manifold; fiber-bundle; α-connection; parallel transport.

1 Introduction

Information geometry investigates the differential-geometric structure of statistical models and has many applications in statistical inference or machine learning for example (see [4]). Since the seminal work of Rao[14] where Fisher information is viewed as a Riemannian metric on a probability distributions space, statistical manifolds have been widely studied. The Fisher information metric on statistical manifold is related to the Kullback-Leibler divergence which is a measure of dissimilarity between two probability distributions. Considering a family of α-divergences, Amari[2] proposed a family of α-connections on statistical manifolds. To elucidate the structures and properties of estimating functions, Amari and Kumon[3] constructed a family of α-connections on Hilbert bundle of statistical manifold, endowed with the Fisher information metric. Vigelis et al.[17] introduced a new metric and α-connections using u_{0}-mappings (or φ-functions), which generalize Fisher information metric and Amari's α-connections. The obtained geometric structure is called a generalized statistical manifold. Recently, de Andrade et al.[5] investigated the mixture and exponential arcs on generalized statistical manifold.

In this paper, we extend the results of Vigelis et al.[17] by defining a new family of α-connections on Hilbert bundle of generalized statistical manifold. We prove that the curvatures of our proposed (1)-connection and (-1 -connection vanish everywhere. Moreover, we give the α-parallel transport associated with α-connection for $\alpha= \pm 1$.

[^0]The rest of the paper is organized as follows. In section 2 , we review the relevant concepts related to generalized statistical manifold. In section 3 we introduce our new α-connection on Hilbert bundle of generalized statistical manifold and prove the mains results.

2 Generalized statistical manifolds and α-connections

In this section, we recall some useful definitions and properties related to generalized statistic manifolds (see[17, 10, 16]). Let (χ, Σ, μ) be a measure space and $P_{\mu}=\{p \in$ $\left.L^{0}: p>0, \int_{\chi} p(x ; \theta) d \mu(x)=1\right\}$ where L^{0} denotes the set of all real-valued, measurable functions on χ.

Definition 2.1. (see[17]) Let $u_{0}: \chi \rightarrow(0, \infty)$ be a measurable function. A function $\phi: \mathbb{R} \rightarrow(0, \infty)$ is said to be a u_{0}-mapping if :

- ϕ is convex,
- $\lim _{x \rightarrow-\infty} \phi(x)=0$ and $\lim _{x \rightarrow \infty} \phi(x)=\infty$,
- for all measurable function $c: \chi \rightarrow \mathbb{R}$ satisfying $\int_{\chi} \phi(c(x)) d \mu(x)=1$, we have $\int_{\chi} \phi\left(c(x)+\lambda u_{0}(x)\right) d \mu(x)<\infty$, for all $\lambda>0$.
Example 2.2. The function ϕ defined by

$$
\phi(x)=\exp (a x+b), a \in(0 ; \infty), b \in \mathbb{R}, \quad \forall x \in \mathbb{R}
$$

is a 1_{χ}-mapping.
Example 2.3. (see[16]) The Kaniadakis' κ-exponential $\exp _{\kappa}: \mathbb{R} \rightarrow(0, \infty)$ defined by

- for $\kappa=0, \exp _{\kappa}$ is the usual exponential map,
- for $\kappa \in[-1,0[\cup] 0,1], \exp _{\kappa}(x)=\left(\kappa x+\sqrt{1+\kappa^{2} x^{2}}\right)^{1 / \kappa}$
is a u_{0}-mapping where u_{0} satisfies $\int_{\chi} \exp _{\kappa}\left(u_{0}\right) d \mu<+\infty$.
Definition 2.4. (see [17]) Let ϕ be a smooth u_{0}-mapping. A generalized statistical manifold is a family of probability distributions

$$
M=\{p(\cdot ; \theta): \theta \in \Theta\} \subset P_{\mu}
$$

such that:

1. Θ is an open and connected set in \mathbb{R}^{n}.
2. Each $p(., \theta)$ is given in terms of $\theta \in \Theta$ by a one to one mapping.
3. Every function $p(x ; \cdot)$ is smooth for all x and the operations of integration with respect to μ and differentiation with respect to θ^{i} (i.e. $\partial / \partial \theta^{i}$) are always commutative.
4. The support of $p(\cdot, \theta)$ does not depend on θ for all $\theta \in \Theta$.
5. The matrix $g=\left(g_{i j}\right)$, which is defined by

$$
g_{i j}=-\mathbb{E}_{\theta}^{\prime}\left[\frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}}\right]
$$

is positive definite at each $\theta \in \Theta$, where $f_{\theta}(\cdot)=\phi^{-1}(p(\cdot ; \theta))$ and

$$
\begin{equation*}
\mathbb{E}_{\theta}^{\prime}[\cdot]=\frac{\int_{\chi}(\cdot) \phi^{(1)}\left(f_{\theta}\right) d \mu}{\int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}\right) d \mu} \tag{2.1}
\end{equation*}
$$

$g_{i j}$ is invariant under reparametrization. When ϕ is the usual exponential function and $u_{0}=1, g$ is the Fisher information matrix.

Lemma 2.1. [17] For $i, j \in\{1,2, \cdots\}$ and $\theta \in M$,

$$
\mathbb{E}_{\theta}^{\prime}\left[\frac{\partial f_{\theta}}{\partial \theta^{i}}\right]=0 \quad \text { and } \quad g_{i j}=\mathbb{E}_{\theta}^{\prime \prime}\left[\frac{\partial f_{\theta}}{\partial \theta^{i}} \frac{\partial f_{\theta}}{\partial \theta^{j}}\right]
$$

where

$$
\begin{equation*}
\mathbb{E}_{\theta}^{\prime \prime}[\cdot]=\frac{\int_{\chi}(\cdot) \phi^{(2)}\left(f_{\theta}\right) d \mu}{\int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}\right) d \mu} \tag{2.2}
\end{equation*}
$$

Let $\partial_{i}=\partial / \partial \theta^{i}$ be the tangent vector of the i-th coordinate curve θ^{i} at the point θ. Then, n such tangent vectors $\partial_{i}, i=1, \cdots, n$, span the tangent space $\top_{\theta} M$ at the point θ of the manifold M. Any tangent vector $A \in \top_{\theta} M$ is a linear combination of the basis vectors ∂_{i},

$$
A=A^{i} \partial_{i}
$$

where A^{i} are the components of vector A and Einstein's summation convention is assumed throughout the paper. The tangent space $\top_{\theta} M$ is a linearized version of a small neighborhood of θ in M and an infinitesimal vector $d \theta=d \theta^{i} \partial_{i}$ denotes the vector connecting two neighboring points θ and $\theta+d \theta$ or two neighboring distributions $p(\cdot, \theta)$ and $p(\cdot, \theta+d \theta)$. Let us introduce a metric in the tangent space $\top_{\theta} M$. It can be done by defining the inner product of two basis vectors ∂_{i} and ∂_{j}. Usually the vector $\partial_{i} \in \mathrm{~T}_{\theta} M$ is represented by a function $\partial_{i} f_{\theta}$ and the metric is defined by

$$
\begin{equation*}
g_{i j}(\theta)=g\left(\partial_{i}, \partial_{j}\right)=\left\langle\partial_{i} f_{\theta}, \partial_{j} f_{\theta}\right\rangle=\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} f_{\theta} \partial_{j} f_{\theta}\right], \forall \theta \in M \tag{2.3}
\end{equation*}
$$

The α-covariant derivative (see [17]) of the basis vector ∂_{j} in the direction ∂_{i} is

$$
\begin{equation*}
\left\langle\nabla_{\partial_{i}}^{(\alpha)} \partial_{j}, \partial_{k}\right\rangle=\Gamma_{i j, k}^{(\alpha)}, \tag{2.4}
\end{equation*}
$$

where

$$
\begin{gathered}
\Gamma_{i j, k}^{(\alpha)}=\frac{1+\alpha}{2} \Gamma_{i j, k}^{(1)}+\frac{1-\alpha}{2} \Gamma_{i j, k}^{(-1)} \\
\Gamma_{i j, k}^{(1)}=\mathbb{E}_{\theta}^{\prime \prime}\left[\frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}} \frac{\partial f_{\theta}}{\partial \theta^{k}}\right]-\mathbb{E}_{\theta}^{\prime}\left[\frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}}\right] \mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \frac{\partial f_{\theta}}{\partial \theta^{k}}\right],
\end{gathered}
$$

$$
\begin{aligned}
\Gamma_{i j, k}^{(-1)}= & \mathbb{E}_{\theta}^{\prime \prime}\left[\frac{\partial^{2} f_{\theta}}{\partial \theta^{i} \partial \theta^{j}} \frac{\partial f_{\theta}}{\partial \theta^{k}}\right]+\mathbb{E}_{\theta}^{\prime \prime \prime}\left[\frac{\partial f_{\theta}}{\partial \theta^{i}} \frac{\partial f_{\theta}}{\partial \theta^{j}} \frac{\partial f_{\theta}}{\partial \theta^{k}}\right] \\
& -\mathbb{E}_{\theta}^{\prime \prime}\left[\frac{\partial f_{\theta}}{\partial \theta^{j}} \frac{\partial f_{\theta}}{\partial \theta^{k}}\right] \mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \frac{\partial f_{\theta}}{\partial \theta^{i}}\right]-\mathbb{E}_{\theta}^{\prime \prime}\left[\frac{\partial f_{\theta}}{\partial \theta^{i}} \frac{\partial f_{\theta}}{\partial \theta^{k}}\right] \mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \frac{\partial f_{\theta}}{\partial \theta^{j}}\right]
\end{aligned}
$$

and

$$
\mathbb{E}_{\theta}^{\prime \prime \prime}[\cdot]=\frac{\int_{\chi}(\cdot) \phi^{(3)}\left(f_{\theta}\right) d \mu}{\int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}\right) d \mu}
$$

3 The Hilbert bundle of a generalized statistical manifold

3.1 Hilbert bundle

Let Υ be the set of μ-integrable and smooth functions r defined from χ to \mathbb{R}. Let ϕ be a smooth and bijective u_{0}-mapping $\phi: \mathbb{R} \rightarrow(0, \infty)$ such that $\forall(\theta, x) \in M \times(0, \infty)$, $\phi^{(1)}(x) \neq 0$ and $M=\left\{p(\cdot ; \theta) ; \theta=\left(\theta^{1}, \cdots, \theta^{n}\right) \in \Theta \subseteq \mathbb{R}^{n}\right\}$ a generalized statistical manifold endowed with the Riemannian metric g defined by (2.3) and parametrized by $\theta=\left(\theta^{1}, \cdots, \theta^{n}\right)$. To each point $\theta \in M$, we associate a linear space H_{θ} defined by

$$
H_{\theta}=\left\{r \in \Upsilon: \mathbb{E}_{\theta}^{\prime}[r]=0, \mathbb{E}_{\theta}^{\prime \prime}\left[r^{2}\right]<+\infty\right\}
$$

where $\mathbb{E}_{\theta}^{\prime}$ and $\mathbb{E}_{\theta}^{\prime \prime}$ are respectively defined by relations (2.1) and (2.2). Throughout this paper we assume that $\mathbb{E}_{\theta}^{\prime \prime}\left[\left(\partial_{i} f_{\theta}\right)^{2}\right]<\infty$ and for all $\left(\theta, \theta^{\prime}\right) \in M^{2}, r \in H_{\theta}$

$$
E_{\theta}^{\prime \prime}\left[r^{2}\right]<+\infty \Longrightarrow \mathbb{E}_{\theta}^{\prime \prime}\left[r^{2}\left(\frac{\phi^{\prime}\left(f_{\theta}\right)}{\phi^{\prime}\left(f_{\theta^{\prime}}\right)}\right)^{2}\right]<+\infty
$$

For each $\theta \in M$ and $r, s \in H_{\theta}$ we set

$$
\begin{equation*}
\langle r, s\rangle_{\theta}:=\mathbb{E}_{\theta}^{\prime \prime}[r s] . \tag{3.1}
\end{equation*}
$$

Proposition 3.1. For all $\theta \in M,\langle\cdot, \cdot\rangle_{\theta}$ is an inner product and $\left(H_{\theta},\langle\cdot, \cdot\rangle_{\theta}\right)$ is a Hilbert space.

Proof. Let $\theta \in M . H_{\theta}$ is a vector space and the map $\langle\cdot, \cdot\rangle_{\theta}$ defined by (3.1) is a positive definite bilinear form, then it is a inner product on H_{θ}. Using the Walter's proof (see [18]) of completeness of the set of measurable and square integrable functions, one proves the completeness of H_{θ}.

Since the tangent vectors $\partial_{i} f_{\theta}(x)$, which span $\top_{\theta} M$, satisfy $\mathbb{E}_{\theta}^{\prime}\left[\partial_{i} f_{\theta}\right]=0$ and $\mathbb{E}_{\theta}^{\prime \prime}\left[\left(\partial_{i} f_{\theta}\right)^{2}\right]<+\infty$, they belong to H_{θ}. Indeed, the tangent space $\top_{\theta} M$ of M at θ is a linear subspace of H_{θ}, and the inner product defined in $\top_{\theta} M$ is compatible with that in H_{θ}. Let N_{θ} be the orthogonal complement of $T_{\theta} M$ in H_{θ}. Then, H_{θ} is decomposed into the direct sum

$$
H_{\theta}=\top_{\theta} M \oplus N_{\theta} .
$$

The aggregate of all H_{θ} 's attached to every $\theta \in M$ with a suitable topology,

$$
H=\cup_{\theta \in M} H_{\theta}
$$

is called the fiber-bundle with base space M. Since the fiber space is a Hilbert space, it is called a Hilbert bundle of M. It should be noted that H_{θ} and $H_{\theta^{\prime}}$ are different Hilbert spaces when $\theta \neq \theta^{\prime}$.

Hence it is convenient to establish a one-to-one correspondence between H_{θ} and $H_{\theta^{\prime}}$, when θ and θ^{\prime} are neighboring points in M. When the correspondence is affine, it is called an affine connection. Let us assume that a vector $r \in H_{\theta}$ at θ corresponds to $r+d r \in H_{\theta+d \theta}$ at a neighboring points $\theta+d \theta$, where d denotes infinitesimally small change.

Lemma 3.2. Let $\theta \in M$ and $r \in H_{\theta}$. Then

$$
\mathbb{E}_{\theta}^{\prime}[d r]=-\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} f_{\theta} r\right] d \theta^{i}+o(\|d \theta\|) .
$$

Proof. Let $\theta \in M$ and $r \in H_{\theta}$. Then $r+d r \in H_{\theta+d \theta}$. Set $\Phi_{x}(\theta)=\phi^{(1)}\left(f_{\theta}(x)\right), x \in \chi$. The function Φ_{x} is differentiable on Θ. Then by Taylor expansion of the function $\theta \mapsto \Phi_{x}(\theta+d \theta)$ we obtain

$$
\Phi_{x}(\theta+d \theta)=\Phi_{x}(\theta)+d_{\theta} \Phi_{x}(d \theta)+o(\|d \theta\|)
$$

where $d_{\theta} \Phi_{x}$ denotes the differential of Φ_{x} at θ. Thus

$$
\begin{aligned}
r+d r \in H_{\theta+d \theta} \Rightarrow & \mathbb{E}_{\theta+d \theta}^{\prime}[r+d r]=0 \\
& \Rightarrow \int_{\chi}[r(x)+d r(x)] \Phi_{x}(\theta+d \theta) d \mu(x)=0 \\
& \Rightarrow \int_{\chi}[r(x)+d r(x)]\left(\Phi_{x}(\theta)+d_{\theta} \Phi_{x}(d \theta)+o(\|d \theta\|)\right) d \mu(x)=0 \\
\Rightarrow & \mathbb{E}_{\theta}^{\prime}[d r]+\mathbb{E}_{\theta}^{\prime \prime}\left[r \partial_{i} f_{\theta}\right] d \theta^{i} \\
& +o(\|d \theta\|) \int_{\chi}[r(x)+d r(x)] d \mu(x)=0 .
\end{aligned}
$$

Using $\int_{\chi}|r(x)+d r(x)| d \mu(x)<\infty$ and (3.2) we deduce $\mathbb{E}_{\theta}^{\prime}[d r]=-\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} f_{\theta} r\right] d \theta^{i}+$ $o(\|d \theta\|)$.

Next, we construct the α-connections on Hilbert bundle.

3.2α-connections on Hilbert bundles

Given $r \in H_{\theta}$, differentiating the identity $\mathbb{E}_{\theta}^{\prime}[r]=0$ with respect to θ, we have $\mathbb{E}_{\theta}^{\prime}\left[\partial_{i} r\right]=-\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} f_{\theta} r\right], \mathbb{E}^{\prime}[r]=\mathbb{E}_{\theta}^{\prime}\left[\partial_{i} f_{\theta}\right]=0$. Set

$$
d r=\frac{1+\alpha}{2} \mathbb{E}_{\theta}^{\prime}\left[\partial_{i} r\right] u_{0} d \theta^{i}-\frac{1-\alpha}{2}\left[\frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{i} f_{\theta} r-\mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \partial_{i} f_{\theta}\right] r\right] d \theta^{i}
$$

We have

$$
\begin{align*}
\mathbb{E}_{\theta}^{\prime}[d r] & =\mathbb{E}^{\prime}\left[\frac{1+\alpha}{2} \mathbb{E}_{\theta}^{\prime}\left[\partial_{i} r\right] u_{0} d \theta^{i}-\frac{1-\alpha}{2} \frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{i} f_{\theta} r d \theta^{i}\right] \\
& =\frac{1+\alpha}{2} \mathbb{E}_{\theta}^{\prime}\left[\partial_{i} r\right] d \theta^{i}-\frac{1-\alpha}{2} \mathbb{E}^{\prime}\left[\frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{i} f_{\theta} r d \theta^{i}\right] \\
& =\frac{1+\alpha}{2} \mathbb{E}_{\theta}^{\prime}\left[\partial_{i} r\right] d \theta^{i}-\frac{1-\alpha}{2} \mathbb{E}^{\prime \prime}\left[\partial_{i} f_{\theta} r\right] d \theta^{i} \tag{3.3}\\
& =-\mathbb{E}^{\prime \prime}\left[\partial_{i} f_{\theta} r\right] d \theta^{i} .
\end{align*}
$$

The α-connection is given by the following α-covariant derivative $\bar{\nabla}^{(\alpha)}$. Let r be a vector field, which attaches a vector $r(\cdot, \theta)$ to every point $\theta \in M$. Then, the rate of the intrinsic change of the vector $r(\cdot, \theta)$ as θ changes in the direction ∂_{i} is given by the α-covariant derivative:

$$
\begin{equation*}
\bar{\nabla}_{\partial_{i}}^{(\alpha)} r=\partial_{i} r-\frac{1+\alpha}{2} \mathbb{E}_{\theta}^{\prime}\left[\partial_{i} r\right] u_{0}+\frac{1-\alpha}{2}\left[\frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{i} f_{\theta} r-\mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \partial_{i} f_{\theta}\right] r\right] \tag{3.4}
\end{equation*}
$$

This is a generalization of the α-connection studied by Amari $[1]$. We have $\mathbb{E}_{\theta}^{\prime}\left[\bar{\nabla}_{\partial_{i}}^{(\alpha)} r\right]=$ 0 because of the identity $\partial_{i} \mathbb{E}_{\theta}^{\prime}[r]=\mathbb{E}_{\theta}^{\prime}\left[\partial_{i} r\right]+\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} f_{\theta} r\right]$. The α-covariant derivative in the direction $A=A^{i} \partial_{i} \in \top_{\theta} M$ is given by

$$
\bar{\nabla}_{A}^{(\alpha)} r=A^{i} \bar{\nabla}_{\partial_{i}}^{(\alpha)} r
$$

The 1-connection is called the exponential connection and the -1 -connection is called the mixture connection.

For each point $\theta \in M$, the tangent space $\top_{\theta} M$ is a subset of the Hilbert space H_{θ}. Hence the tangent bundle of M,

$$
\top M=\cup_{\theta \in M} \top_{\theta} M
$$

is a subset of H. We can define an affine connection in $\top M$ by introducing an affine correspondence between $\top_{\theta} M$ and $\top_{\theta^{\prime}} M$ for neighboring points θ and θ^{\prime}.

An affine connection given such that $r \in H_{\theta}$ corresponds to $r+d r \in H_{\theta+d \theta}$, induces an affine connection in $\top_{\theta} M$ such that $r \in \top_{\theta} M \subset H_{\theta}$ corresponds to the orthogonal projection of $r+d r \in H_{\theta+d \theta}$ onto $\top_{\theta+d \theta} M$.

3.3 Parallel transport on Hilbert bundles

We start this subsection by the following definition.
Definition 3.1. Let $c=\{c(t), t \in[0,1]\}$ be a curve in M. A vector field $r(\cdot, t) \in$ $H_{c(t)}$ defined along the curve c is said to be α-parallel, when

$$
\begin{equation*}
\bar{\nabla}_{\dot{c}}^{(\alpha)} r=\dot{r}-\frac{1+\alpha}{2} \mathbb{E}_{c}^{\prime}[\dot{r}] u_{0}+\frac{1-\alpha}{2}\left[\frac{\phi^{(2)}\left(f_{c}\right)}{\phi^{(1)}\left(f_{c}\right)} \dot{f}_{c} r-\mathbb{E}_{c}^{\prime \prime}\left[u_{0} \dot{f}_{c}\right] r\right]=0 \tag{3.5}
\end{equation*}
$$

where \dot{r} denotes $\partial r / \partial t$, etc.

Definition 3.2. A vector $r_{1}(\cdot) \in H_{\theta_{1}}$ is the α-parallel transport of $r_{0}(\cdot) \in H_{\theta_{0}}$ along a curve $c=\{c(t), t \in[0,1]\}$ connecting $\theta_{0}=c(0)$ and $\theta_{1}=c(1)$, when $r_{0}(\cdot)=r(\cdot, 0)$ and $r_{1}(\cdot)=r(\cdot, 1)$ in the solution $r(\cdot, \cdot)$ of (3.5).

Generally, the parallel transport along a curve c connecting θ to θ^{\prime} depends on on c.

Theorem 3.3. (see [12]) For an affine connection, parallel transport is independent of the path if and only if the curvature tensor vanishes.

Now, we investigate the e - and m-parallel transport operators from H_{θ} to $H_{\theta^{\prime}}$, for $\left(\theta, \theta^{\prime}\right) \in M^{2}$. Then we can prove the following important theorem.

Theorem 3.4. Let ${ }^{(e)} \pi_{\theta}^{\theta^{\prime}}$ and ${ }^{(m)} \pi_{\theta}^{\theta^{\prime}}$ be the e - and m-parallel transport operators from H_{θ} to $H_{\theta^{\prime}}$. Then

$$
\begin{aligned}
{ }^{(e)} \pi_{\theta}^{\theta^{\prime}} r(x) & =r(x)-\mathbb{E}_{\theta^{\prime}}^{\prime}[r] u_{0}(x) \\
{ }^{(m)} \pi_{\theta}^{\theta^{\prime}} r(x) & =\frac{r(x) \phi^{(1)}\left(f_{\theta}(x)\right) \int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta^{\prime}}\right) d \mu}{\phi^{(1)}\left(f_{\theta^{\prime}}(x)\right) \int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}\right) d \mu}
\end{aligned}
$$

Proof. Let $c=\{c(t), t \in[0,1]\}$ be a curve connecting two points $\theta=c(0)$ and $\theta^{\prime}=c(1)$. Let $r^{(\alpha)}(x, t)$ be an α-parallel transport vector defined along the curve c. Then, it satisfies (3.5). When $\alpha=1$, it is reduced to

$$
\begin{equation*}
\frac{\dot{r}^{(e)}(x, t)}{u_{0}(x)}=\mathbb{E}_{c(t)}^{\prime}\left[\dot{r}^{(e)}(\cdot, t)\right] . \tag{3.6}
\end{equation*}
$$

Since the right-hand side

$$
\mathbb{E}_{c(t)}^{\prime}\left[\dot{r}^{(e)}(\cdot, t)\right]=\frac{\int_{\chi} \dot{r}^{(e)}(x, t) \phi^{(1)}\left(f_{c(t)}(x)\right) d \mu(x)}{\int_{\chi} u_{0}(x) \phi^{(1)}\left(f_{c(t)}(x)\right) d \mu(x)}
$$

of (3.6) does not depend on x, its solution (with the initial condition $r(x)=r^{(e)}(x, 0)$) is given by

$$
r^{(e)}(x, t)=r(x)+a(t) u_{0}(x)
$$

where

$$
a(t)=-\mathbb{E}_{c(t)}^{\prime}[r]
$$

Then

$$
{ }^{(e)} \pi_{\theta}^{\theta^{\prime}} r(x)=r(x)-\mathbb{E}_{\theta^{\prime}}^{\prime}[r] u_{0}(x) .
$$

When $\alpha=-1,(3.5)$ is reduced to

$$
\dot{r}^{(m)}(x, t)+\left\{\frac{\phi^{(2)}\left(f_{c(t)}(x)\right)}{\phi^{(1)}\left(f_{c(t)}(x)\right)} \dot{f}_{c(t)}(x)-\mathbb{E}_{c(t)}^{\prime \prime}\left[u_{0} \dot{f}_{c(t)}\right]\right\} r^{(m)}(x, t)=0
$$

The solution is

$$
r^{(m)}(x, t)=k(x) \frac{\int_{\chi} u_{0} \phi^{(1)}\left(f_{c(t)}(x)\right) d \mu}{\phi^{(1)}\left(f_{c(t)}(x)\right)}
$$

where $k(x)=\frac{r(x) \phi^{(1)}\left(f_{\theta}(x)\right)}{\int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}(x)\right) d \mu(x)}$. Then

$$
{ }^{(m)} \pi_{\theta}^{\theta^{\prime}} r(x)=\frac{r(x) \phi^{(1)}\left(f_{\theta}(x)\right) \int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta^{\prime}}\right) d \mu}{\phi^{(1)}\left(f_{\theta^{\prime}}(x)\right) \int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}\right) d \mu}
$$

As consequence of the two previous theorems, we get the following result.
Corollary 3.5. The exponential $\bar{\nabla}^{(1)}$ and mixture connection $\bar{\nabla}^{(-1)}$ are curvature free.
Lemma 3.6. We assume that $\forall x \in \chi, \phi^{(2)}(x)>0$. If there exists a real constant k such that

$$
\begin{equation*}
\phi^{(2)}\left(f_{\theta}\right)=\phi^{(1)}\left(f_{\theta}\right) \int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}\right) d \mu+k \tag{3.7}
\end{equation*}
$$

then

$$
\begin{equation*}
E_{\theta}^{\prime \prime \prime}\left[\partial_{i} f_{\theta} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right]=\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} f_{\theta} \partial_{k} f_{\theta}\left(\frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{j} f_{\theta}+\mathbb{E}_{\theta}^{\prime \prime}\left(u_{0} \partial_{j} f_{\theta}\right)\right)\right] \tag{3.8}
\end{equation*}
$$

Proof. Let ϕ be a smooth and bijective u_{0}-mapping such that $\forall(\theta, x) \in M \times(0, \infty)$, $\phi^{(1)}(x) \neq 0, \phi^{(2)}(x)>0$ and ϕ satisfies (3.7). Let $(i, j, k) \in\{1,2, \cdots, n\}^{3}$.

$$
\begin{align*}
(3.7) \Rightarrow & \partial_{j} f_{\theta} \phi^{(3)}\left(f_{\theta}\right)=\partial_{j} f_{\theta} \phi^{(2)}\left(f_{\theta}\right) \int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}\right) d \mu \\
& +\phi^{(1)}\left(f_{\theta}\right) \int_{\chi} u_{0} \partial_{j} f_{\theta} \phi^{(2)}\left(f_{\theta}\right) d \mu \\
\Rightarrow \quad & \frac{\partial_{j} f_{\theta} \phi^{(3)}\left(f_{\theta}\right)}{\phi^{(2)}\left(f_{\theta}\right)}=\partial_{j} f_{\theta} \int_{\chi} u_{0} \phi^{(1)}\left(f_{\theta}\right) d \mu \\
& +\frac{\phi^{(1)}\left(f_{\theta}\right)}{\phi^{(2)}\left(f_{\theta}\right)} \int_{\chi} u_{0} \partial_{j} f_{\theta} \phi^{(2)}\left(f_{\theta}\right) d \mu \\
\Rightarrow \quad & \frac{\partial_{j} f_{\theta} \phi^{(3)}\left(f_{\theta}\right)}{\phi^{(2)}\left(f_{\theta}\right)}=\frac{\partial_{j} f_{\theta} \phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \\
& +\frac{\phi^{(1)}\left(f_{\theta}\right)}{\phi^{(2)}\left(f_{\theta}\right)} \int_{\chi} u_{0} \partial_{j} f_{\theta} \phi^{(2)}\left(f_{\theta}\right) d \mu \\
\Rightarrow \quad & \partial_{i} f_{\theta} \partial_{k} f_{\theta} \frac{\partial_{j} f_{\theta} \phi^{(3)}\left(f_{\theta}\right)}{\phi^{(2)}\left(f_{\theta}\right)}=\partial_{i} f_{\theta} \partial_{k} f_{\theta}\left[\frac{\partial_{j} f_{\theta} \phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)}\right. \\
& \left.+\frac{\phi^{(1)}\left(f_{\theta}\right)}{\phi^{(2)}\left(f_{\theta}\right)} \int_{\chi} u_{0} \partial_{j} f_{\theta} \phi^{(2)}\left(f_{\theta}\right) d \mu\right] . \tag{3.9}
\end{align*}
$$

By taking the expectation of (3.9), we get the relation (3.8).
In the following theorem, we show that with a sufficient and necessary condition on ϕ, the restriction to $\top M$ of the family of α-connections (3.4) of H is exactly the family of α-connections (2.4) of TM given by Rui et al.[17]. Since the geometry of M is indeed that of $T M$, our α-geometry of H is an extension of that of M.

Theorem 3.7. For all i, j and k in $\{1,2, \cdots, n\}$ and $\theta \in M$,

$$
g\left(\bar{\nabla}_{\partial_{i}}^{(\alpha)} \partial_{j}, \partial_{k}\right)=\Gamma_{i j, k}^{(\alpha)}
$$

if and only if ϕ satisfies

$$
E_{\theta}^{\prime \prime \prime}\left[\partial_{i} f_{\theta} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right]=\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} f_{\theta} \partial_{k} f_{\theta}\left(\frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{j} f_{\theta}+\mathbb{E}_{\theta}^{\prime \prime}\left(u_{0} \partial_{j} f_{\theta}\right)\right)\right]
$$

where $\Gamma_{i j, k}^{(\alpha)}$ is defined by relation (2.4).
Proof. Let i, j and k in $\{1,2, \cdots, n\}$. We have

$$
\begin{aligned}
g\left(\bar{\nabla}_{\partial_{i}}^{(\alpha)} \partial_{j}, \partial_{k}\right)= & \left\langle\bar{\nabla}_{\partial_{i} f_{\theta}}^{(\alpha)} \partial_{j} f_{\theta}, \partial_{k} f_{\theta}\right\rangle_{\theta} \\
= & \left\langle\partial_{i} \partial_{j} f_{\theta}, \partial_{k} f_{\theta}\right\rangle_{\theta}-\frac{1+\alpha}{2} \mathbb{E}_{\theta}^{\prime}\left[\partial_{i} f_{\theta} \partial_{j} f_{\theta}\right]\left\langle u_{0}, \partial_{k} f_{\theta}\right\rangle_{\theta} \\
& +\frac{1-\alpha}{2}\left\langle\frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{i} f_{\theta} \partial_{j} f_{\theta}, \partial_{k} f_{\theta}\right\rangle_{\theta} \\
& -\frac{1-\alpha}{2}\left[\mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \partial_{i} f_{\theta}\right]\left\langle\partial_{j} f_{\theta}, \partial_{k} f_{\theta}\right\rangle_{\theta}\right] \\
= & \mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right]-\frac{1+\alpha}{2} \mathbb{E}_{\theta}^{\prime}\left[\partial_{i} f_{\theta} \partial_{j} f_{\theta}\right] \mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \partial_{k} f_{\theta}\right] \\
& +\frac{1-\alpha}{2} \mathbb{E}_{\theta}^{\prime \prime}\left[\frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{i} f_{\theta} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right] \\
& -\frac{1-\alpha}{2}\left\{\mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \partial_{i} f_{\theta}\right] \mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{j} f_{\theta} \partial_{k} f_{\theta}\right]\right\}
\end{aligned}
$$

We know that $\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right]=\frac{1+\alpha}{2} \mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right]+\frac{1-\alpha}{2} \mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right]$,

$$
\begin{aligned}
\mathbb{E}_{\theta}^{\prime \prime \prime}\left[\partial_{i} f_{\theta} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right]= & \mathbb{E}_{\theta}^{\prime \prime}\left[\frac{\phi^{(2)}\left(f_{\theta}\right)}{\phi^{(1)}\left(f_{\theta}\right)} \partial_{i} f_{\theta} \partial_{j} f_{\theta} \partial_{k} f_{\theta}\right] \\
& +\mathbb{E}_{\theta}^{\prime \prime}\left[\partial_{i} f_{\theta} \partial_{k} f_{\theta}\right] \mathbb{E}_{\theta}^{\prime \prime}\left[u_{0} \partial_{j} f_{\theta}\right]
\end{aligned}
$$

Then one has $g\left(\bar{\nabla}_{\partial_{i}}^{(\alpha)} \partial_{j}, \partial_{k}\right)=\frac{1+\alpha}{2} \Gamma_{i j, k}^{(1)}+\frac{1-\alpha}{2} \Gamma_{i j, k}^{(-1)}=\Gamma_{i j, k}^{(\alpha)}$.

References

[1] S. Amari, Differential-Geometrical Methods in Statistics, Lecture Notes in Statist. 28, Springer, New York, 1985.
[2] S. Amari, Information Geometry and Its Applications, Applied Mathematical Sciences Series 194, Springer, Berlin/Heidelberg, 2016.
[3] S. Amari and M. Kumon, Estimation in the presence of infinitely many nuissance parameters-geometry of estimating functions, The Annals of Statistics, 16, 3 (1988), 1044-1068.
[4] S. Amari, H. Nagaka, Methods of Information Geometry, Translation of Mathematical Monographs 191, 1993.
[5] L.H.F. de Andrade, L.J. Vieira, R.F. Vigelis, C.C. Cavalcante, Mixture and exponential arcs on generalized statistical manifold, Entropy, 20(3) (2018), 147.
[6] W. M. Boothby, An introduction to Differentiable Manifolds and Riemannian Geometry, Academic Press, New York, 1975.
[7] M. P. Do Carmo, Riemannian Geometry, Birkhauser Inc., Boston, 1992.
[8] M. Do Carmo, Geometria Riemaniana. Proyecto Euclides, IMPA, 2nd edition, 1988.
[9] H. Gauchman, Connection colligations on Hilbert bundles, Integral Equations and Operator Theory 6 (1983), 31-58.
[10] H. Ishi, Explicit formula of Koszul-Vinberg characteristic functions for a wide class of regular convex cones, Entropy 18 (11), 383, 2016.
[11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, WileyInterscience, 1963.
[12] S. Norbert, General Relativity, Graduate Texts in Physics, Springer, 2nd ed, 2013.
[13] P. Petersen, Riemannian Geometry, Graduate Texts in Mathematics 171, 2nd ed., Springer, New York, 2006.
[14] C.R. Rao, Information and accuracy attainable in the estimation of statistical parameter, Bull. Calcutta. Math. Soc. 37 (1945), 81-91.
[15] T. Sakai, Riemannian Geometry, Translations of Mathematical Monographs 149, American Mathematical Society, 2015.
[16] D. de Souza, R. F. Vigelis, C. C. Cavalcante, Geometry induced by a generalization of Renyi divergence, Entropy 18(11) (2016), 407.
[17] R.F. Vigelis, D. C. de Souza, C.C. Cavalcante, New metric and connections in statistical manifolds, Proc. of the Int. Conf. on Geometric Sci. of Information, Vol. 9389, Springer, Berlin, 2015; 222-229.
[18] W. Rudin, Principles of Mathematical Analysis, 3rd ed., McGraw-Hill, 1976.
Authors' address:
Amour T. Gbaguidi Amoussou
Institut de Mathématiques et de Sciences Physiques(IMSP),
Université d'Abomey-Calavi(UAC), Bénin.
E-mail: amour.gbaguidi@imsp-uac.org
Freedath Djibril Moussa
Faculté des Sciences et Techniques (FAST),
Université d'Abomey-Calavi(UAC), Bénin.
E-mail: freedath.djibril@imsp-uac.org
Carlos Ogouyandjou
Institut de Mathématiques et de Sciences Physiques(IMSP),
Université d'Abomey-Calavi(UAC), Bénin.
E-mail: ogouyandjou@imsp-uac.org (corresponding author)
Mamadou Abdoul Diop
Université Gaston Berger, Saint-Louis, Sénégal.
E-mail: mamadou-abdoul.diop@ugb.edu.sn

[^0]: BSG Proceedings 26. The International Conference "Differential Geometry - Dynamical Systems" DGDS-2018, 30 August - 2 September 2018, Mangalia-Romania, pp. 23-32.
 (C) Balkan Society of Geometers, Geometry Balkan Press 2018.

