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Abstract: Starting from the main definitions, we review the rigging technique for null hypersurfaces
theory and most of its main properties. We make some applications to illustrate it. On the one hand,
we show how we can use it to show properties of null hypersurfaces, with emphasis in null cones,
totally geodesic, totally umbilic, and compact null hypersurfaces. On the other hand, we show the
interplay with the ambient space, including its influence in causality theory.
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1. Introduction

Null hypersurfaces are present in general relativity in several fundamental theories.
For example, the thermodynamic of black holes stated an unexpected link between classical
thermodynamic theory and black hole theory using the horizon of the black hole, which
is a null hypersurface [1–3]. On the other hand, the set of points that can be reached by a
future null geodesic from a fixed point (the vertex) is called the future null cone. It appears
in causality theory and it is a null hypersurface near the vertex, but maybe not far away
because of the presence of null conjugate points to the vertex or self-intersections. Null
cones as null hypersurfaces can be used as characteristic initial value problem in general
relativity, see [4], and they are important to improve properties of the solution of wave
equations, so it is interesting to know a lower bound of the null injectivity radius [5–7].
Two transversely intersecting null hypersurfaces can be used also as characteristic initial
value problem in general relativity [8]. The problem of the formation of trapped surfaces
and black holes is another fundamental theory where the use of null hypersurfaces is
important [9], as well as the problem of the stability of the Minkowski space [10]. These
examples show the importance of the study of null hypersurfaces in physical applications.

From a geometric point of view, null hypersurfaces are natural submanifolds in
Lorentzian, or more generally, semi-Riemannian manifolds, except in the Riemannian case
because they have not a Riemannian counterpart. The family of null hypersurfaces in
Lorentzian geometry is a distinguished family of submanifolds, and this fact is enough
to think that their properties are in part a consequence of the general properties of the
ambient space, and conversely, their properties can say something about the ambient space.
In a certain sense, a null hypersurface resembles Lagrange submanifolds in symplectic
geometry or Legendrian submanifolds in contact geometry, because they are submanifolds
where a non-degenerate structure in the ambient space degenerates when it is induced on
the submanifold.

Another interesting point is the study of an individual null hypesurface, that is, its
geometry as a submanifold. For this purpose, the most important object is its null second
fundamental form, obtained through the choice of a null vector field tangent to the null
hypersurface. This allows us to classify them in totally umbilic, totally geodesic, or other.
These ideas correspond to its extrinsic geometry. The induced metric from the ambient
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space in the null hypersurface is not useful because it is degenerated on it, thus its intrinsic
geometry is essentially non-metric.

There are two classical techniques to study a null hypersurface L using some kind of
intrinsic geometry that can be implemented on it. The first one, introduced in [11], takes
a null vector field ξ tangent to L (in fact it is only needed its null direction) and study
the quotient TL/span(ξ), see also [12–14]. The second one needs a geometric data (ξ,S),
where ξ is a null vector field tangent to L, and S a distribution in L transverse to ξ, called
the screen distribution. The vector field ξ allows us to define the null second fundamental
form, and it and the screen distribution determine N, the unique null vector field defined
on L, transverse to L, orthogonal to S , and suitably normalized [15].

The first technique uses the null direction and the second one the choice of a null
tangent vector field ξ on L. Both obtain a null second fundamental form as a fundamental
tool, but the first one furnishes the orbit space with a “quotient metric” and a “quotient
connection”. The choice of a null vector field is essentially the way physicists study null
hypersurfaces and it seems today that it can be considered as the minimum geometric
choice needed to study them.

The second technique provides more geometric objects which allows us to ask new
questions and solve new problems, but since the geometric data (ξ,S) are chosen arbitrar-
ily and independently, they are not tuned enough and it generates difficulties handling
them. Moreover, they do not provide any reasonable metric and connection on the null
hypersurface, so the questions that can be asked and solved are, in general, not well linked
to other classical properties. An example is the lack of information about compact null
hypersurfaces using this technique. Anyway, it is the most used in the mathematical
literature but, due to the mentioned difficulties, the geometric point of view is much less
developed than the physical counterpart.

There are more geometric points of view like [16] where the authors study the degen-
erated induced metric itself obtaining a partial classification of them, but they have not
been further developed.

The most recent geometric point of view is called the rigging technique introduced
by the authors in [17]. It is based on the choice of a vector field transverse to the null
hypersurface, called rigging vector field, from which we can introduce the rigged geometric
data (ξ,S , N, g̃) of the second technique plus a Riemannian metric g̃. All these rigged
geometric data are tuned together with the rigging vector field. In some cases we can
choose the rigging vector field to link the geometry introduced in L with the ambient space.
This solves, in part, the difficulties arising with previous techniques and it provides new
perspective to link with the properties of the ambient space, especially in the presence
of symmetries.

The aim of this paper is to survey this technique showing its main features and some
of its applications. We are mainly interested in using it to relate the property of the family
of null hypersurfaces with properties of the ambient space, even those of global nature
such as in the causality theory. We are also interested in studying null hypersurfaces
individually, mainly by means of the rigged Riemannian metric to explore its properties.
For example, we study compact null hypersurfaces, totally geodesic or totally umbilic ones
and null cones.

Almost all the results presented here use the rigging technique in a fundamental
way in the sense that they was found and proved thanks to this technique. There are two
remarkable exceptions, Theorem 16, which was previously proved in [13,18,19], has been
used here to check the new technique, and a version of the zeroth law of the black hole’s
thermodynamic (Section 3.7). We are interested in the ideas more than their details, so we
will not include proofs of the results, which can be checked in the references.

2. The Rigging Technique

In this section, we introduce the main ideas of the rigging technique and its properties.
First, we show how a rigging vector field induces the geometric objects needed to study
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a null hypersurface, the most important of which is a Riemannian metric. After that, we
establish important relations between the new Riemannian structure and the geometry of
the ambient space. The main reference for this section is [17].

2.1. Rigged Vector Field and Rigged Metric

Along this review (M, g) is a connected n-dimensional Lorentzian manifold with sig-
nature (−,+, ...,+). We always consider embedded null hypersurfaces L unless otherwise
stated and denote i : L→ M the canonical inclusion, although it will be usually avoided.

Definition 1. A hypersurface L of (M, g) is null if the inherit metric tensor i∗g is degenerate at
every point of L.

The radical of L is defined as Radp(L) = TpL ∩ TpL⊥ for all p ∈ L. Since TpL is a null
hyperplane and the ambient metric is Lorentzian, TpL⊥ ⊂ TpL and dim TpL⊥ = 1. So there
is a unique null direction in L which is orthogonal to any direction in L. In particular, it
does not contain timelike directions and it is foliated by null curves.

Observe that being foliated by null curves is not sufficient for a hypersurface to be
null. An easy counterexample is a timelike plane in the Minkowski space. However, an
additional condition on the causality of the hypersurface implies that it is null, as the
following result shows.

Lemma 1 ([14]). If a locally achronal hypersurface of a Lorentzian manifold is foliated by null
curves, then it is a null hypersurface.

Locally, we can pick a null vector field ξ tangent to the null hypersurface. Since
ξ ∈ TL⊥, given U ∈ X(L) we have

0 = g(ξ, [ξ, U]) = g(ξ,∇Uξ)− g(ξ,∇ξU) = g(∇ξ ξ, U),

so ∇ξ ξ is proportional to ξ and the null hypersurface is locally foliated by null geodesics.

Definition 2. A rigging vector field (a rigging for short) for a null hypersuface L is a vector field ζ
defined on some open set containing L and transverse to it, that is, ζp /∈ TpL for each p ∈ L. If the
rigging is defined only on the null hypersurface we say that it is a restricted rigging.

The notion of a rigging can be found in [20] and its use combined with an associated
Riemannian metric was done in [21–24]. In our approach we define the rigging in an open
set containing the null hypersurface to link its properties to those of the ambient space.
This is especially relevant in the presence of symmetries. The freedom to choose the rigging
vector field can be used to take an adapted rigging for every kind of problem, much like
we choose an adapted orthonormal basis to solve problems in affine Euclidean spaces. For
example, for null cones there exists a rigging vector field, such that the rigged associated
data (ξ,S , N, g̃) have the salient property that ξ is a geodesic vector field for both metrics g
and g̃. This allows us to study the localization of null conjugate points to the vertex using
the Riemannian metric g̃, see Section 3.3.

It is well known that we cannot project ζ on L in a canonical way due to the degeneracy
of the induced metric i∗g. In the non-degenerate case, the orthogonal projection of ζ is the
vector field metrically equivalent to i∗α where α is the one-form metrically equivalent to ζ.
This construction can also be done in the degenerate case when ζ is transverse to L.

Take α the 1-form metrically equivalent to ζ and consider ω = i∗α. Observe that

ω(U) = α(U) (1)

for any U ∈ X(L). We will use systematically this identity.



Axioms 2021, 10, 284 4 of 35

Since ζ is transverse to L, the bilinear form g̃ = ω
⊗

ω + i∗g is a Riemmanian metric
on L, which is called the rigged metric associated to ζ. The g̃-metrically equivalent vector
field to ω is denoted by ξ and it is called the rigged vector field associated to ζ.

Lemma 2. The rigged vector field ξ is the unique null vector field tangent to L normalized by
g(ζ, ξ) = 1. Moreover, ξ is g̃-unitary.

Of course we can define the rigged vector field directly with the characterization
provided in Lemma 2, but by doing so we miss the desired tuning with the ambient space.
For example, if the rigging is closed (resp. conformal), the rigged ξ is g̃-geodesic (resp.
g-geodesic) as we will see below.

We can consider the screen distribution on L given by ξ⊥ = ker ω, which is denoted
by Sζ or S if there is no confusion. The null transverse vector field to L is given by

N = ζ − 1
2

g(ζ, ζ)ξ,

which is the unique null vector field in X(i), the C∞(L)-module of vector fields on M
defined on points of L, normalized so that g(N, ξ) = 1. Moreover, we have the following
decompositions

Tp M = TpL⊕ span(Np), (2)

TpL = Sp ⊕ span(ξp), (3)

for all p ∈ L. We call P : TL −→ S the projection associated to the decomposition (3) above.
In this way, we have associated with the rigging ζ the classical geometric data (ξ,S , N)

needed to study the geometry of a null hypersurface. Additionally, we have two important
improvements: the tuning of the geometric data with the rigging vector field (and, therefore,
between themselves), which provides a link of the properties of the hypersurfaces with the
ambient space, and the associated rigged Riemannian metric g̃ which will allow us to use
Riemannian techniques in null hypersurfaces.

Rigging vector fields are abundant in examples. A time-orientable Lorentzian mani-
fold is a Lorentzian manifold furnished with a timelike vector field, which will be a rigging
for any null hypersurface. Recall that if a Lorentzian manifold is not time-orientable, then
it admits a double covering which is. Time orientability is a hypothesis usually assumed
in physics.

The existence of a rigging vector field for a null hypersurface is the generic situation.
In fact, despite the above comment on timelike vector fields, a rigging does not need
to be timelike at all, so we have a great freedom to choose it. However, although the
local existence of a rigging is guaranteed, it may not exist globally because it implies the
existence of the rigged vector field on L which is a never zero vector field, a non trivial
topological property. The following example shows another difficulty due to the lack of
orientability.

Example 1. Consider the Minkowski space (L3, g) = (R3, dx2 + dy2 + dydz) and call M the
quotient by the isometry group generated by Φ(x, y, z) = (x − 1,−y,−z), which induces a
Lorentzian metric on M. The projection of the plane y = 0 is a null hypersurface diffeomorphic to
a Möbius band. It does not exist a globally defined rigging for this hypersurface, since it does not
admit a globally defined null section ξ.

In the above example, M is orientable but L is not. In general, if M is orientable and
there is a rigging for a null hypersurface L, then L is also orientable.

From now on, we suppose that L is a null hypersurface which admits a rigging vector
field ζ. We will denote U, V, W vector fields in L and X, Y, Z vector fields in S .
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We review the classical equations associated to the geometric data (ξ,S , N) [15].
According to the decomposition (2) we have

∇UV = ∇L
UV + B(U, V)N, (4)

∇U N = τ(U)N − A(U),

where ∇L
UV, A(U) ∈ TL. The induced connection ∇L is torsion free but, in general, is not

metric, so its use is limited. The one-form τ defined on L is determined by the second
equation above as

τ(U) = g(∇U N, ξ) = g(∇Uζ, ξ), (5)

and in physics literature it is usually called rotation-one form.
A is the shape operator of L and we have A(U) ∈ S , since g(∇U N, N) = 0. B is a

symmetric tensor, called the null second fundamental form of L, determined by the first
equation above as

B(U, V) = −g(∇Uξ, V).

Using that [U, V] ∈ X(L) for any U, V ∈ X(L), it is straightforward to see that B is
symmetric and B(ξ, U) = 0 for all U ∈ X(L).

Since g(ξ, ξ) is constant, the vector field ∇Uξ in tangent to L, so we can decompose it
according to the direct sum decomposition (3) as

∇Uξ = −τ(U)ξ − A∗(U),

where A∗(U) ∈ S . The endomorphism A∗ is called the shape operator of S and it satisfies

B(U, V) = g(A∗(U), V) = g(U, A∗(V)), (6)

B(A∗(U), V) = B(U, A∗(V)), (7)

for all U, V ∈ X(L).
The trace of A∗ is the null mean curvature of L. If {e3, . . . , en} is an orthonormal basis

of Sp, then it can be written as

Hp =
n

∑
i=3

g(A∗(ei), ei) =
n

∑
i=3

B(ei, ei).

If we define the tensor field

C(U, V) = −g(∇U N, P(V)) (8)

for any U, V ∈ X(L), then we have

∇L
UX = ∇∗UX + C(U, X)ξ (9)

for any U ∈ X(L) and X ∈ S , where ∇∗UV = P(∇L
UV). The tensor C also holds the

equations

C(U, X) = g(A(U), X), (10)

C(X, Y)− C(Y, X) = g(N, [X, Y]), (11)

so S is integrable if, and only if, C restricted to S is symmetric. In this case, given a leaf
S of S , ∇∗ restricted to it is the induced Levi–Civita connection from the ambient space,
and Equations (4) and (9) show that its second fundamental form as a codimension two
submanifold of M is

IS(X, Y) = C(X, Y)ξ + B(X, Y)N, (12)
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where X, Y ∈ TS.
The tensors B, C and τ depend on the chosen rigging but we know its behavior under

a rigging change, see [25]. Suppose ζ ′ is another rigging for L and decompose it as

ζ ′ = ΦN + X0 + g(ζ ′, N)ξ,

where Φ = g(ζ ′, ξ) ∈ C∞(L) never vanishes because ζ ′ is a rigging and X0 ∈ S . We can
check that the rigged vector field and the null transverse vector field induced from ζ ′ are

ξ ′ =
1
Φ

ξ,

N′ = ΦN + X0 −
1

2Φ
g(X0, X0)ξ.

Moreover, if we denote B′, C′ and τ′ the corresponding tensors induced from ζ ′, and
∇′L the induced connection, then

• B′ = 1
Φ B. In particular, H′ = 1

Φ H;
• τ′(U) = τ(U) + 1

Φ B(X0, U) + d(ln |Φ|)(U);
• C′(U, V) = ΦC(U, V) + g(X0, V)τ′(U)− g(∇L

UX0, V)− 1
2Φ g(X0, X0)B(U, V);

• ∇′LU V −∇L
UV = − 1

Φ B(U, V)V0, where V0 = X0 − 1
2Φ g(X0, X0)ξ.

The notions of totally geodesic and totally umbilic hypersurface can also be defined in
the degenerate case. We say that L is totally geodesic if B ≡ 0 and totally umbilic if B = ρg for
certain ρ ∈ C∞(L). From the above formulas we see that these definitions do not depend
on the rigging.

Other geometric conditions that do not depend on the chosen rigging are having zero
null mean curvature and having screen non-degenerate second fundamental form, i.e.,
B(X, Y) = 0 for all Y ∈ S implies X = 0. In particular, having screen definite second
fundamental form, which means B(X, X) 6= 0 for all non-zero X ∈ S , is also independent
on the rigging.

Since A∗ : TL→ TL is selfadjoint, see (6), A∗(ξ) = 0 and g restricted to S is Rieman-
nian, A∗ is diagonalizable. The eigenvalues of A∗ are called the principal curvatures of L
respect to ζ and they only depend on the rigged vector field, not on the screen distribution,
(Lemma 3.1.1 [26]). Indeed, if k2, . . . , kn are the principal curvatures respect to ζ, then
k2
Φ , . . . , kn

Φ are the principal curvatures respect to another rigging ζ ′ = ΦN + X0 + g(ζ ′, N)ξ.
Observe that 0 is always a principal curvature and the multiplicities of the principal
curvatures are independent of the chosen rigging.

The curvature tensor of ∇L is defined as

RL
UVW = ∇L

U∇L
VW −∇L

V∇L
UW −∇L

[U,V]W.

It satisfies RL
UVξ = RUVξ and the so called Gauss–Codazzi equations, see [15].

g(RUVW, X) = g(RL
UVW, X) + B(U, W)g(A(V), X)− B(V, W)g(A(U), X), (13)

g(RUVW, ξ) =
(
∇L

U B
)
(V, W)−

(
∇L

V B
)
(U, W) + τ(U)B(V, W) (14)

− τ(V)B(U, W),

g(RUVW, N) = g(RL
UVW, N).

Other important equations which follows from the above ones are the following.

g(RUV X, N) =
(
∇∗L

U C
)
(V, X)−

(
∇∗L

V C
)
(U, X) + τ(V)C(U, X)

− τ(U)C(V, X), (15)

g(RUVξ, N) = C(V, A∗(U))− C(U, A∗(V))− dτ(U, V), (16)
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where ∇∗L
U C is defined as(

∇∗L
U C

)
(V, X) = U(C(V, X))− C(∇L

UV, X)− C(V,∇∗UX).

The usual sectional curvature is not defined for null planes. In [13], Harris introduced
the null sectional curvature for a null plane Π as follows. Fix u ∈ Π a null vector and write
Π = span(u, v) for some vector v ∈ Π (necessarily spacelike). The null sectional curvature
of Π respect to u is

Ku(Π) =
g(Ruvv, u)

g(v, v)
.

It is easy to check that Ku(Π) does not depend on the chosen spacelike vector v, but
if we take another null vector u′ = λu ∈ Π for some non-zero λ ∈ R, then Ku′(Π) =
λ2Ku(Π). Therefore, although the null sectional curvature of a null plane does depend on
the chosen null vector in Π, its sign is independent on any choice. In particular, it has sense
to say zero null sectional curvature without any explicit mention to the chosen null vector.

Using Equation (14), we can compute the null sectional curvature respect to ξ of a null
plane Π tangent to L at a point p. If we take a unitary v ∈ Sp, such that Π = span(ξp, v),
then

Kξ(Π) =
(
∇L

ξ B
)
(v, v)−

(
∇L

v B
)
(ξ, v) + τ(ξ)B(v, v). (17)

This equation has the following interesting consequence.

Proposition 1. Let (M, g) be a Lorentzian manifold and p ∈ M, such that K(Π) 6= 0 for any
null plane Π ⊂ Tp M. Then, it does not exist any totally geodesic null hypersurface through p.

This proposition applies to the Friedmann cosmological models. Since its null sectional
curvature never vanishes, (Corollary 6.5 [27]), it does not admit totally geodesic null
hypersurfaces.

2.2. Rigged Connection

We want to develop all the usual tools from the Riemannian structure on L provided
by g̃. The first step is to understand the relationship between the Levi–Civita connections
∇ and ∇̃ of g and g̃, respectively, and its dependence on the rigging. After that, we will do
the same for their curvatures. Observe that the null Gauss–Codazzi equations shown above
relate the curvatures of ∇ and ∇L. On the other hand, ∇L and ∇̃ are both connections on
the same manifold L, so their relationships can be established using the difference tensor
DL = ∇L − ∇̃. We also take D = ∇− ∇̃ for convenience. Recall that DL is a symmetric
tensor on X(L).

Proposition 2. If Lξ denotes the Lie derivative along ξ, then we have

g(D(U, V), W) = −1
2
(
ω(W)(Lξ g̃)(U, V) + ω(U)dω(V, W) + ω(V)dω(U, W)

)
for all U, V, W ∈ X(L).

Since D− DL = B · N we also have the following relation.

g(DL(U, V), W) = −1
2
(
ω(W)(Lξ g̃)(U, V) + ω(U)dω(V, W) + ω(V)dω(U, W)

)
− B(U, V)ω(W) (18)

for all U, V, W ∈ X(L).
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The following identity will be useful in the theory. It shows a nice tuning between the
rigging and B, C, ω, and τ.

Proposition 3. Given U ∈ X(L) and X ∈ S it holds

−2C(U, X) = dω(U, X) +
(

Lζ g
)
(U, X) + g(ζ, ζ)B(U, X),

C(ξ, X) = −τ(X)− g̃(∇̃ξξ, X).

Note that we can switch dω with dα in the above identity.
Another useful information is the following result which establishes a link between

the intrinsic and the extrinsic geometry of (L, g̃).

Proposition 4. Take X, Y, Z ∈ S . It holds

1. ∇̃XY = ∇∗XY− g̃(∇̃Xξ, Y)ξ and, thus, g̃(∇̃XY, Z) = g(∇XY, Z).
2.

(
Lξ g̃
)
(X, Y) = −2B(X, Y). In particular H = −d̃ivξ.

Definition 3. Let (M, g) be a semi-Riemannian manifold. A vector field U is orthogonally
conformal (resp. orthogonally Killing) if (LU g)(X, Y) = ρg(X, Y) (resp. (LU g̃)(X, Y) = 0) for
any X, Y ∈ U⊥. We call ρ the conformal function of U.

If, moreover, (M, g) is Lorentzian and U is timelike and unitary, then it is called spatially
conformal stationary (resp. spatially Killing stationary).

The above definition is usual in Lorentzian geometry, see [27,28] for example, since it
codifies a symmetry type of the ambient space.

The first point of the above proposition and the definition of ∇L allows us to get an
explicit formula for DL restricted to the screen distribution, simplifying the computations
for the difference of curvatures. In fact, for all X, Y ∈ S we get

DL(X, Y) =
(

C(X, Y) + g̃(∇̃Xξ, Y)
)

ξ. (19)

The second point in Proposition 4 implies that L is totally geodesic if, and only if, ξ is
orthogonally Killing and it is totally umbilic if, and only if, ξ is orthogonally conformal.
Moreover, we have an explicit expression for H as a divergence of a vector field. Although
it is not surprising taking into account the expression of H in a local orthonormal adapted
basis, this fact allows us to apply Stoke’s Theorem. In fact, if M is orientable and L is a null
hypersurface admitting a rigging, it is also orientable. If it is compact, then Stoke’s theorem
implies that

∫
L Hdg̃ = 0. Therefore, the null mean curvature (associated to any rigging)

distributes on any compact null hypersurface so that the above integral is zero, in a way
that remembers the curvature of a Torus in surface theory. In particular, it has to vanish at
some point, which is a remarkable difference with respect to non-null hypersurfaces.

Another important remark is that we can express B in terms of the rigged data since
for any X, Y ∈ S , point 2 of Proposition 4 means

B(X, Y) = −1
2
(g̃(∇̃Xξ, Y) + g̃(∇̃Yξ, X)).

If S is integrable, then dω(X, Y) = 0 for any X, Y ∈ S and we have

B(X, Y) = −g̃(∇̃Xξ, Y).

Moreover, Equation (19) above simplifies to

DL(X, Y) = (C(X, Y)− B(X, Y))ξ. (20)
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Let us now explain how a suitable choice of the rigging helps us to get information
from the symmetries of the ambient space. The symmetries we consider are through the
existence of a rigging with special properties.

Recall that ζ ∈ X(M) is called a conformal vector field with conformal factor σ if Lζ g = σg
for some σ ∈ C∞(M). If σ = constant 6= 0 then it is called homothetic vector field and if σ = 0
then it is called a Killing vector field.

We will consider another kind of vector fields with suitable properties concerning
the differentiable structure of the ambient space. We say that ζ is a closed vector field if its
equivalent one-form α is a closed form. In terms of the connection all the three kind of
vector fields are formally similar. In fact, if U, V ∈ X(M), then ζ is

1. Conformal if, and only if, g(∇Uζ, V) + g(U,∇Vζ) = 2σg(U, V) where σ is the con-
formal function;

2. Killing if, and only if, g(∇Uζ, V) + g(U,∇Vζ) = 0;
3. Closed if, and only if, g(∇Uζ, V)− g(U,∇Vζ) = 0.

Although the existence of a conformal or a Killing vector field is a severe restriction
on the metric, codifying a strong symmetry, the existence of a timelike closed vector field is
always ensured locally, so there always exists a closed rigging in a neighborhood of any
point in any null hypersurface.

Recall that the existence of a timelike, closed and conformal vector field is equivalent
to the local decomposition of (M, g) as a generalized Robertson–Walker space, see [27].

The existence of a conformal rigging carries some advantages.

Proposition 5. If ζ is a conformal rigging for a null hypersurface, then

• ξ is g-geodesic, that is τ(ξ) = 0.;
• τ(X) = C(ξ, X) = − 1

2 g̃(∇̃ξξ, X) for all X ∈ S .

In physics, it is usual to suppose that a null hypersurface admits a geodesic null
section, that is, a geodesic null vector field. However, this can be only achieved locally. For
this, we reparametrize a fixed null section to obtain a geodesic one, which is equivalent
to solve an ordinary differential equation for the new parameter. Globally is not possible
in general, but the region where it can be solved is enough for physical purposes. An
example where it does not exist a global geodesic null section is T×R, being T the Clifton–
Pohl torus, see [29], where there is a null geodesic flow spinning around a S1 factor with
increasing speed.

Another result ensuring that we can obtain a geodesic null section under a strong
topological condition can be found in (Theorem 18 [14]).

The existence of a closed rigging has also some advantages, besides the integrability
of the screen distribution. We call Ĩ the second fundamental form of a leaf of S as a
submanifold of (L, g̃).

Proposition 6. If ζ is a closed rigging, then

• ∇̃XY = ∇∗XY + B(X, Y)ξ for all X, Y ∈ S ;
• ∇̃Uξ = −A∗(U) for all U ∈ X(L);
• ∇̃ξξ = 0 and Ĩ(X, Y) = B(X, Y)ξ;
• τ(X) = −C(ξ, X).

The third point above says that the rigged vector field ξ is g̃-geodesic. It is immediate
since ξ is g̃-unitary and the rigged one-form ω is also closed.

Observe that a conformal rigging provides us with a g-geodesic rigged vector field,
whereas a closed rigging gives us a g̃-geodesic one.

If L is a totally geodesic null hypersurface, then any geodesic of the ambient which is
tangent to L at some point remains locally in L. This geometric interpretation of the totally
geodesic condition is the same for non-degenerate hypersurfaces, however being totally
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umbilic has not a clear geometric interpretation for null hypersurfaces, since 0 is always a
principal curvature. On the other hand, observe from Equation (12) that even if L is totally
umbilic with integrable screen, the leaves of S are not totally umbilic codimension two
submanifolds of the ambient space in general. The following corollary gives a geometric
interpretation of being totally geodesic or umbilic if we choose a closed rigging.

Corollary 1. Let L be a null hypersurface and ζ a closed rigging for it.

1. L is totally geodesic if, and only if, the rigged vector field ξ is g̃-parallel;
2. L is totally geodesic (resp. umbilic) if, and only if, each leaf of S is totally geodesic (resp.

umbilic) as a hypersurface in (L, g̃).

Another benefit of taking a closed rigging is that we have an explicit expression for
the rigged connection. For this, we introduce a tensor C̄ which contains the information of
C and τ.

C̄(U, V) = C(P(U), P(V))−ω(V)τ(P(U))−ω(U)τ(P(V))−ω(U)ω(V)τ(ξ)

for all U, V ∈ X(L).

Proposition 7. Suppose that ζ is a closed rigging for a null hypersurface and take U, V, W ∈ X(L).
Then

• g̃(∇̃UV, W) = g(∇UV, W) + ω(W)U(ω(V));
• ∇̃UV = ∇L

UV + (B(U, V)− C̄(U, V))ξ.

Point 2 of this result completes the information in Equation (20) to all possible direc-
tions in L.

It would be interesting to establish a simple formula for the rigged connection under a
rigging change as those formulas for B, C, τ, and ∇L. We do not know it, but we have the
following related result. Recall that the shape operator A∗ : TL → TL of S is symmetric
and it has real eigenvalues called principal curvatures.

Theorem 1 ([25]). Suppose ζ is a rigging for a null hypersurface L and ζ ′ is another rigging such
that their rigged connections coincide, ∇̃ = ∇̃′. We decompose

ζ ′ = ΦN + X0 + g(ζ ′, N)ξ

with X0 ∈ S .

• If X0 vanishes and Φ2 6= 1 everywhere in L, then L is totally geodesic, dω = 0 and Φ is a
constant;

• If X0 does not vanish at any point, then the multiplicity of the 0-principal curvature is at least
dim L− 2.

As a corollary, we have that for a totally umbilic null hypersurface with non zero null
mean curvature, the unique rigging that induces the same rigged connection as a given
rigging ζ, is of the form ζ ′ = ±N + g(ζ ′, N)ξ. This is because if X0 does not vanish at some
point, then we can apply the second point of the above theorem in a neighborhood of this
point to obtain a contradiction. Therefore, we have that X0 vanishes and we can apply the
first point of the theorem to obtain Φ2 = 1.

We finish this subsection with the following question. Under what conditions do
the rigged connections ∇̃ and the induced connection ∇L coincide? In this case, we say
that ∇̃ is a preferred connection and the following result gives us necessary and sufficient
conditions, see [25].

Theorem 2. Given a rigging ζ for a null hypersurface, it holds ∇̃ = ∇L if and only if B = C̄, that
is, B = C and τ = 0.
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2.3. Curvature Relations

The aim of this section is to establish a link between the curvature invariants of the
ambient space and those of the Riemann rigged metric on a null hypersurface. The strategy
is to use the Gauss–Codazzi equations given in Section 2.1 that relate the curvature of
the ambient space with the curvature of the induced connection ∇L. After that, we use
the fact that ∇L and ∇̃ are both linear connections on L to relate their curvatures. The
computations are tedious and they need the results of the above section, see [17] for details.
We achieve only partial results, but it is enough to show the potential of its use and to
obtain new valuable information.

If we have two arbitrary symmetric connections∇L and ∇̃ on a manifold L, then their
curvature tensors RL and R̃ are related by

RL
UVW = R̃UVW + (∇̃U DL)(V, W)− (∇̃V DL)(U, W)

+ DL(U, DL(V, W))− DL(V, DL(U, W)),

for all U, V, W ∈ X(L), where DL = ∇L − ∇̃. Using this formula, we can obtain the
difference of the sectional curvatures, for g and g̃, of planes in the screen distribution.

Theorem 3. Let M be a Lorentzian manifold, L a null hypersurface and ζ a rigging for it. If
Π = span(X, Y), being X, Y ∈ S unitary and orthogonal vectors, then

K(Π)− K̃(Π) = −C(Y, Y)B(X, X)− C(X, X)B(Y, Y)

+ (C(X, Y) + C(Y, X))B(X, Y)

+ B(X, X)B(Y, Y)− B(X, Y)2 +
3
4

dω(X, Y)2.

Observe that in the case of a totally geodesic hypersurface, we have the inequality
K(Π) ≥ K̃(Π) for any tangent plane contained in S .

We are now interested in a formula relating the curvature for a null plane in L. In this
case we need an additional hypothesis. Call S = ∇̃ξ : X(L)→ X(L) the operator defined
by S(U) = ∇̃Uξ and S∗ : X(L)→ X(L) its adjoint endomorphism respect to g̃, that is, S∗ is
the unique endomorphism such that g̃(S(U), V) = g̃(U, S∗(V)) for all U, V ∈ X(L).

Since g̃(S∗(U), ξ) = g̃(U, S(ξ)) = g̃(U, ∇̃ξξ), we can decompose S∗(U) as

S∗(U) = S∗⊥(U) + g̃(U, ∇̃ξ ξ)ξ, (21)

where S∗⊥(U) is g̃-orthogonal to ξ. On the other hand, observe that g̃(U, S∗(ξ)) =
g̃(S(U), ξ) = 0 for all U ∈ X(L), so S∗(ξ) = 0.

Definition 4. We say that the rigged vector field ξ is orthogonally normal if

g̃(S(X), S(X)) = g̃(S∗⊥(X), S∗⊥(X)) (22)

for all X ∈ S .

Orthogonally normal rigged vector fields appear in two important cases: integrable
screen distributions and totally umbilic null hypersurfaces. Indeed, if the screen dis-
tribution S is integrable, a straightforward computation shows S∗⊥(X) = S(X) for all
X ∈ S and obviously Equation (22) is satisfied. If L is totally umbilic, then point 2 of
Proposition 4 implies that ξ is orthogonally conformal and an easy computation gives us
S∗⊥(X) = 2ρX− S(X) for certain ρ ∈ C∞(L) and all X ∈ S . Now it is trivial to see that ξ
is orthogonally normal.
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Theorem 4. Let (M, g) be a Lorentzian manifold, L a null hypersurface and ζ a rigging for L.
Suppose that its rigged vector field ξ is orthogonally normal. If Π = span(X, ξ), where X ∈ S is a
unitary vector, then

Kξ(Π)− K̃(Π) = τ(ξ)B(X, X)− g̃(∇̃X∇̃ξξ, X) + g̃(X, ∇̃ξξ)2

+
1
2

(
g̃(S2(X), X)− g̃(S(X), S(X)

)
.

Corollary 2. Let L be a null hypersurface and ζ a rigging for it. Suppose that its rigged vector
field ξ is orthogonally normal. Then

Ric(ξ, ξ) = R̃ic(ξ, ξ) + τ(ξ)H − d̃iv∇̃ξ ξ +
1
2

(
trace(S2)− |S⊥|2

)
,

where |S⊥|2 = ∑n
i=3 g̃(S(ei), S(ei)) and {e3, . . . , en} is an orthonormal basis of S .

Using that ξ is orthogonally normal and the Cauchy–Schwarz inequality it is easy to
see that

g̃(S2(X), X) ≤ g̃(S(X), S(X)),

so the last part of the formula in Theorem 4 and Corollary 2 has sign.
If the rigging is closed, the formulas above symplifies thanks to Proposition 6 and we

can obtain the following corollary.

Corollary 3. Let L be a null hypersurface and ζ a closed rigging for it. Then

1. Kξ(Π) = K̃(Π) + τ(ξ) B(X,X)
g(X,X)

, where Π = span(ξ, X) and X ∈ S .

2. Ric(ξ, ξ) = R̃ic(ξ, ξ) + τ(ξ)H.

Suppose now that the screen distribution S is integrable. A leaf of S can be considered
as a submanifold of both (M, g) and (L, g̃). In the first case, we know that the induced
Levi–Civita connection is ∇∗ and its second fundamental form is IS (X, Y) = C(X, Y)ξ +
B(X, Y)N. In the second case, the induced connection from (L, g̃) is also ∇∗ but its second
fundamental form is I(X, Y) = B(X, Y)ξ.

We can relate the curvatures of the leaf corresponding to the different Levi–Civita
connections involved. If S is a leaf of S and we call KS and K̃S the sectional curvature
induced as a submanifold in (M, g) and (L, g̃), respectively, then

KS(Π) = K̃S(Π),

K(Π) = KS(Π)− C(X, X)B(Y, Y)− B(X, X)C(Y, Y)

+ 2C(X, Y)B(X, Y),

K̃(Π) = K̃S(Π)− B(X, X)B(Y, Y) + B(X, Y)2,

for any tangent plane Π = span(X, Y) with X, Y ∈ S .

3. Applications

There are several families of null hypersurfaces which have great interest. We begin
with the natural classification that provides the null second fundamental form, that is,
totally umbilic and totally geodesic null hypersurfaces. The significance of totally umbilic
null hypersurface is not the same than its Riemannian counterpart, but it means some
degree of symmetry that should be determined. An example is Theorem 19 which informs
us of a kind of symmetry of a totally umbilic null cone. Another example is Theorem 9
where we claim that any totally umbilic null hypersurface admits locally a twisted rigged
metric.
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The hypothesis of being totally geodesic is very restrictive, for example, null cones
cannot fulfill it. Nevertheless, it is an important hypothesis because isolated black hole
horizons are totally geodesic. From a physical point of view, there are a strong development
of this kind of horizons but from a geometric point of view we know few properties.

Null cones and black hole horizons are important families of null hypersurfaces that
should be analyzed using the rigging technique. Compact null hypersurfaces are also of
great interest, since they are exotic objects and their existence carries some restriction on
the causality of the ambient manifold.

In the above section, we have shown most of the development of the rigging technique.
Our aim now is to provide us with a good relation with the geometry of the ambient
manifold. In this section, we want to show the potential of the technique. We believe
that most of the problems that we will present here can not be treated with previous
techniques, because we will use results most of them derived from the use of the rigged
metric, or exploit the tuning of the rigged data with the rigging, but of course there are
some exceptions.

We will use several subsections to present different kind of null hypersurfaces more
or less close to the tittle, but in fact the division cannot be rigid.

3.1. Totally Umbilic and Totally Geodesic Null Hypersurfaces

Recall that the classification of null hypersurfaces in totally umbilic, totally geodesic,
and other is made using the null second fundamental form and it does not depend on the
chosen rigging. The main reference for this subsection is [17].

We have seen in Proposition 1 that the existence of totally geodesic null hypersurfaces
is not guaranteed in general. The same occurs for totally umbilic null hypersurface. To see
it we need the following theorem.

Theorem 5. Let I × f F be a generalized Robertson–Walker space. If L is a totally umbilic null
hypersurface, then for each (t0, x0) ∈ L there exists a decomposition of F in a neighborhood of x0 as
a twisted product with one dimensional base(

J × S, ds2 + µ(s, z)2gS
)
,

where x0 is identified with (0, z0) for some z0 ∈ S and L is given by

{(t, s, z) ∈ I × J × S : s =
∫ t

t0

1
f (r)

dr}.

Moreover, if H is the null mean curvature of L, then

µ(s, z) =
f (t0)

f (t)
exp
(∫ s

0

H(t, r, z) f (t)2

n− 2
dr
)

for all (t, s, z) ∈ L.
Conversely, if F admits a twisted decomposition in a neighborhood of x0 as above, then

L = {(t, s, z) ∈ I × J × S : s =
∫ t

t0
1

f (r)dr} is a totally umbilic null hypersurface with null mean
curvature

H =
n− 2
f (t)2

(
f ′(t) +

µs(s, z)
µ(s, z)

)
.

As an immediate consequence we can give the following obstruction to the existence
of totally umbilic (geodesic) null hypersurfaces in a generalized Robertson–Walker space.

Corollary 4. If the fibre of a generalized Robertson–Walker space does not admit any local decom-
position as a twisted (warped) product with one dimensional base, then it does not exist any totally
umbilic (geodesic) null hypersurface.
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The non-existence of a local decomposition of a Riemannian manifold as a twisted
or warped product with one-dimensional base can be usually deduced from a curvature
analysis. For example, in a twisted product with a one dimensional factor, any plane
containing the tangent direction to the one-dimensional base has the same sectional cur-
vature. Thus, for example S2 × S2 does not admit any local decomposition as a twisted
product with one-dimensional base since for any tangent vector we can find two planes
with different sectional curvatures. Therefore, using the above corollary, in the generalized
Robertson–Walker space I × f

(
S2 × S2) there are not totally umbilic null hypersurfaces.

We now obtain a consequence of the relations on curvatures obtained in the above
subsections, that can be more accurate for a totally geodesic null hypersurface.

Theorem 6. Let L be a totally geodesic null hypersurface and ζ a closed rigging for it. Given
U, V, W ∈ X(L) and X, Y ∈ S , the following holds.

1. RUVW − R̃UVW = g(RUVW, N)ξ for all U, V, W ∈ X(L);
2. If Π = span{X, U} is a tangent plane to L, then

K(Π) =

(
1 +

g(X, X)g̃(U, ξ)2

g(X, X)g(U, U)− g(X, U)2

)
K̃(Π) if Π is spacelike,

Kξ(Π) = K̃(Π) = 0 if Π is null;

3. The Ricci tensor of g̃ is given by

R̃ic(X, Y) = Ric(X, Y)− g(RξXY, N)− g(RξYX, N),

R̃ic(ξ, U) = 0;

4. If s̃ and s denote the scalar curvature of (L, g̃) and (M, g), respectively, then

s− s̃ = 4Ric(ξ, N)− 2K(span(ξ, N)).

In [17], point 3 of this theorem also claims that Ric(ξ, U) = 0, but it is wrong (we
thank R. Hounnonkpe for pointing out this). However, if additionally M holds the null
dominant energy condition, then this claim is true, see Section 3.7.

We say that a Lorentzian manifold satisfies the reverse null convergence condition if
Ric(u, u) ≤ 0 for any null vector u ∈ TM. Although the opposite inequality is the usual
one in physical applications, observe that the reverse null convergence condition includes
the important family of Ricci-flat spacetimes.

Theorem 7. Let (M, g) be an orientable Lorentzian manifold with n ≥ 3 which obeys the reverse
null convergence condition. If there exists a timelike conformal vector field on M, then any compact
totally umbilic null hypersurface is totally geodesic.

The proof of this theorem is a very good example of the philosophy of the rigging
technique. Since the rigging is conformal, we know that the rigged vector field is g-geodesic.
On the other hand, it is also orthogonally normal because L is totally umbilic, so we can
apply Corollary 2 and Proposition 4 to obtain

Ric(ξ, ξ)− R̃ic(ξ, ξ) = −d̃iv∇̃ξξ + tr(S2)− (n− 2)ρ2,

where B = ρg. Integrating on the null hypersurface L respect to g̃ and using a classical
Bochner formula we obtain∫

L
Ric(ξ, ξ)dg̃ = (n− 2)(n− 3)

∫
L

ρ2dg̃.
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If n ≥ 4 the conclusion of the theorem easily follows from the fact Ric(ξ, ξ) ≤ 0. In the
case n = 3 this last argument is not valid but we can prove the following stronger result
based on the Gauss–Bonnet Theorem.

Theorem 8. Let (M, g) be a three dimensional Lorentzian manifold furnished with a timelike
conformal vector field. If it holds the null convergence condition or the reverse null convergence
condition, then any compact and orientable null surface is totally geodesic.

Moreover, if Ric(u, u) 6= 0 for all null vector u, then it does not exist any compact orientable
null surface.

An example where the hypotheses of the Theorem 7 are fulfilled is the Lorentzian
torus

Tn =

(
S1 × . . .× S1, dx1dx2 +

n

∑
i=3

dx2
i

)
.

and the null hypersurface L = {x ∈ Tn : x2 = 0}. In this case, Tn is flat, L is a compact and
totally geodesic null hypersurface and ζ = ∂x1 − ∂x2 is a timelike and conformal (in fact
parallel) rigging.

The following theorem is one of the most important in this theory. It shows how the
presence of a closed rigging unveils information on the local rigged metric structure of a
totally umbilic null hypersurface.

Theorem 9. Let (M, g) be a Lorentzian manifold, L a totally umbilic null hypersurface and ζ a
closed rigging for L. Given p ∈ L, (L, g̃) is locally isometric to a twisted product (R× S, dr2 +
λ2g|S), where the rigged vector field ξ is identified with ∂r, S is the leaf of S through p and

λ(r, q) = exp
(
−
∫ r

0

H(φs(q))
n− 2

ds
)

,

being φ the flow of ξ. In particular, dH is proportional to ω if, and only if, (L, g̃) is locally
isometric to a warped product and L is totally geodesic if, and only if, (L, g̃) is locally isometric to a
direct product.

Moreover, if L is simply connected and ξ is complete, the above decomposition is global.

We can also obtain a global decomposition assuming the existence of a timelike
gradient vector field on M instead of the simply connectedness because in this case the
integral curves of ξ intersect any leaf of S at only one point and the flow of ξ splits L
globally as R × S. Recall that in a stably causal spacetime it always exists a timelike
gradient vector field.

Remark 1. Compactness is an obstruction to obtain the global decomposition of a totally umbilic
null hypersuperface. Even more, the presence of a rigging which is a gradient vector field prevents
the null hypersurface to be compact (not necessarily totally umbilic), see [17,25].

Or more generally, if there exists a rigging for a null hypersurface L and there is a gradient
vector field which is not proportional to the rigged vector field at any point, then L is not compact. In
fact, if ζ is a rigging for L and we decompose∇ f = X + aξ + bN, where X ∈ S and a, b ∈ C∞(L),
then we can easily check that the gradient of f ◦ i respect to the rigged metric is ∇̃( f ◦ i) = X + bξ.
If L is compact, then there is a critical point p ∈ L of f ◦ i. Thus Xp = 0, b(p) = 0 and, therefore,
∇ fp = a(p)ξp, contradiction.

We show several examples of the above theorem.

Example 2. Consider the Minkowski space Ln+1 =
(
Rn+1,−dx2

0 + . . . + dx2
n
)
, the future null

cone with vertex at the origin C+
0 = {(x0, . . . , xn) : −x2

0 + . . . + x2
n = 0, x0 > 0} and the rigging
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ζ = −∂x0 . The rigged vector field is ξ = 1
x0

P, where P is the position vector field based at p = 0
and the null second fundamental form is B = − 1

x0
g.

If we take p = (1, 1, . . . , 0) ∈ C+
0 , the leaf through p of the screen distribution is a (n− 1)-

dimensional euclidean sphere of radius 1 and the integral curve of ξ with initial condition p is
γ(t) = (t + 1)p. Applying the above theorem, the Riemannian manifold

(
C+

0 , g̃
)

is isometric to
the warped product given by(

(−1, ∞)× Sn−1, dr2 + (1 + r)2gSn+2

)
,

which coincides with the usual metric on the null cone induced from the Euclidean metric in Rn+1.

Example 3. Consider the pseudosphere Sn
1 = {x ∈ Ln+1 : −x2

0 + . . . + x2
n = 1}, which is

furnished with the induced metric from the Minkowski space Ln+1, and decompose−∂x0 = ζ + x0P,
where P is the position vector field as above and ζx ∈ P⊥x = TxSn

1 for any x ∈ Sn
1 . The vector

field ζ restricted to Sn
1 is a timelike, closed, and conformal vector field and we suppose that it is

past-directed.
The future null cone of Sn

1 with vertex at p = (0, . . . , 1) ∈ Sn
1 is given by C+p = Sn

1 ∩ C+
p ,

where C+
p is the future null cone of Ln+1 with vertex at p. Therefore, C+p is a hypersurface of

C+
p that can be obtained intersecting C+

p and the hyperplane xn = 1. If we consider the rigging
ζ, then the rigged vector field is 1

x0
P′ where P′ = x0∂x0 + x1∂x1 + ... + xn−1∂xn−1. The rigged

metric on C+p coincides with the induced metric from the euclidean cone (C+
p , g̃). Thus, C+p is also a

(n− 1)-dimensional euclidean cone.

Example 4. Let m be a positive constant and consider Q = {(u, v) ∈ R2 : uv > −2m
e } the

Kruskal plane with metric 2F(r(u, v))dudv, where F and r are certain functions. In the Kruskal
spacetime Q×r S2 the hypersurfaces Lu0 = {(u, v, x) ∈ Q× S2 : u = u0} are totally umbilic
null hypersurfaces (totally geodesic if u0 = 0). If we consider the closed rigging ζ = 1

F(r)∂u, then
the rigged vector field is ∂v and B = − rv

r g. From Theorem 9, (Lu0 , g̃) is isometric to the warped

product
(
−2m
u0e , ∞

)
× r(u0,v)

2m
S2 if u0 6= 0 and to the direct product R× S2 if u0 = 0.

3.2. Completeness of the Rigged Metric

For further applications it is interesting to tackle the problem of the completeness
of the rigged metric. Compact null hypersurfaces are of course the most relevant case.
The non-compact case is not complete in general, but if we can identify some situation
where completeness is fulfilled, then we have a good tool to apply standard Riemannian
techniques. The details of this subsection can be seen in [30].

Let M = I × f F be a generalized Robertson–Walker space. The rigging ζ = f ∂t is
both a gradient and conformal timelike vector field. Let L be a null hypersurface and h
any primitive of − f . Take ζ = ∇h = f ∂t as a rigging for L. Its induced rigged vector field
is ξ = ∇̃(h ◦ i) which has unit g̃-norm. Recall from [31] the following important fact: A
Riemannian manifold (M, g) is complete if, and only if, it admits a proper C3 function with
bounded gradient. So the following result follows.

Proposition 8. If L is a null hypersurface in a generalized Robertson–Walker space M = I × f F,
such that f ◦ i has a primitive which is a proper function on L, then (L, g̃) is complete, where g̃ is
the rigged metric induced from the rigging f ∂t.

If F is compact, then the primitive h : I −→ R of f is a proper function if, and only if,
M is null complete. In fact, h′ = − f < 0 so it is a diffeomorphism onto its image, but it is
surjective due to [32]. Considered as a function h : I × F −→ R, it is proper if, and only if,
M is null complete. Finally if L is a closed subset then h ◦ i : L −→ R is also proper. Hence
we have.
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Proposition 9. Let M = I × f L be a generalized Robertson–Walker space with compact Rieman-
nian factor F. If M is null complete, then any topologically closed null hypersurface is g̃-complete
for the rigging ζ = f ∂t.

Example 5. If the fiber F of a generalized Robertson–Walker M = I × f F is complete, then the
null completeness of M depends exclusively on the behavior of the warping function, since in [32] it
is shown that M is geodesically null complete if, and only if,

∫ c

a
f (t)dt =

∫ b

c
f (t)dt = ∞,

where I = (a, b) and c is some fixed point in I.
For example, if F is complete, then any closed null hypersurface in R×t2+1 F is g̃-complete

for the rigging ζ = f ∂t.

The following theorem is based in an elementary observation. The associated rigged
metric to the rigging ζ =

√
2∂t is a direct product with one dimensional base.

Theorem 10. Let M = R× f F be a generalized Robertson–Walker space with complete Rieman-
nian factor (F, gF). If L is a topologically closed null hypersurface, then the Riemannian structure
(L, g̃) induced by the rigging ζ =

√
2∂t is complete.

There are other results that are applicable to more general Lorentzian manifolds with
different kind of hypothesis. We show a couple of them in the following theorems.

Theorem 11. Let (M, g) be a Lorentzian manifold and ζ a closed rigging for a connected non-
compact null hypersurface. If ξ is complete and S has compact leaves then (L, g̃) is complete.

Theorem 12. Let (M, g) be a Lorentzian manifold furnished with a proper function f whose
gradient is timelike everywhere. For any topologically closed null hypersurface L, the rigging
ζ = ∇ f makes (L, g̃) complete.

We illustrate the above results with some applications to the existence of closed
geodesic in (L, g̃). We need positive definiteness of the null second fundamental form,
which has many consequences in the Riemannian case. A well-known theorem due to
Hadamard states that if the second fundamental form of a compact immersed hypersurface
M of a Euclidean space is positive definite, then M is embedded as the boundary of a
convex body [33,34]. Recall that if a complete Riemannian manifold admits a convex
function, any closed geodesic belongs to one of its level sets, (Proposition 2.1 [35]).

Proposition 10. Let ζ be a closed rigging for a null hypersurface L in a simply connected
Lorentzian manifold (M, g). If L is g̃-complete and has screen definite second fundamental form,
then (L, g̃) contains no closed geodesics. In particular, if L is proper totally umbilic, then (L, g̃)
does not contain closed geodesics.

This proposition remains true if M is not simply connected but the first De Rham
cohomology group H1(L,R) is trivial or the rigged one form ω is exact so that the rigged
vector field ξ is a gradient vector field.

The following application gives us a restriction on the topology of a proper totally
umbilic null surface (in 3-dimensional Lorentzian manifold) which can admit a g̃-complete
Riemannian metric for a given rigging. It follows from the classification of complete
surfaces without closed geodesic, see (Theorem 3.2 [36]).
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Theorem 13. Let (M, g) be a simply connected three dimensional Lorentzian manifold and L a
null surface which is non totally geodesic at any point. If there is a closed rigging for L, such that
(L, g̃) is complete, then L is homeomorphic to the plane or the cylinder.

In the following corollary, we take the rigging ζ =
√

2∂t to obtain a complete rigged
metric, see Theorem 10.

Corollary 5. Let M = R× f F be a 3-dimensional generalized Robertson–Walker space with
complete Riemannian factor (F, g0). If a null surface is topologically closed and non totally geodesic
at any point, then it is homeomorphic to the plane or the cylinder.

3.3. Null Cones

The rigging technique is specially useful in studying null cones. The main reason is the
existence of a rigging with the remarkable property that its rigged vector field is g-geodesic
and g̃-geodesic simultaneously. The main references for this subsection are [17,37].

The definition of null cone itself depends on the authors, so we describe the notion of
null cone that we are going to use. Roughly speaking, it is the image of the exponential
map of the null cone at its tangent space.

Fixed a timelike vector e ∈ Tp M, its tangent null cone is

Ĉe = {u ∈ Tp M : g(u, u) = 0, g(u, e) < 0}.

If θ̂ is the maximal definition domain of expp, then we define the null cone of e as

Ce = {expp(u) : u ∈ θ̂ is null and g(u, e) < 0} = expp

(
Ĉe ∩ θ̂

)
.

Observe that a null cone is not an embedded null hypersurface in general, due to
the presence of null conjugate points or null crossing points, i.e., a point x ∈ Ce, such that
there are two distinct null vectors u1, u2 ∈ Ĉe with expp(u1) = expp(u2) = x. However,
it is clear that near the vertex it is always a embedded null hypersurface. We can take a
maximal portion (in some sense and depending on the fixed vector e) of the null cone Ce
which is an embedded null hypersurface as follows.

We define

Ŝ(0,t) = {v ∈ Ĉe : g(e, v) < t},

S(0,t) = expp

(
θ̂ ∩ Ŝ(0,t)

)
and take ip the supremum of t ∈ R, such that expp : Ŝ(0,t) → S(0,t) is a diffeomorphism.
Obviously, S(0,ip) is an embedded hypersurface and the fact that it is a null hypersurface is
a direct consequence of the Gauss lemma.

Null cones in Robertson–Walker spaces (and, therefore, in constant curvature spaces)
are totally umbilic. In constant curvature it is well know that the converse holds, but we can
find counterexamples in Robertson–Walker spaces. However, we can prove the following
characterization [38].

Theorem 14. Any totally umbilic null hypersurface in a Robertson–Walker space I × f Sn−1

(n > 3) with ∫
I

1
f (r)

dr > π

is an open set of a null cone. In particular, it cannot exist totally geodesic null hypersurfaces.

The inequality in the above theorem cannot be sharpened. For example, it is easy to
construct a totally geodesic null hypersurface in the De Sitter space Sn

1 = R×cosh(t) Sn−1,
which is not contained in a null cone. For this, consider Sn

1 as a subset of the Minkowski
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space Ln+1 in the standard way and intersect it with a null plane of Ln+1 through the origin.
On the other hand, we can apply the theorem to two remarkable types of Robertson–Walker
spaces. The first one is the closed Friedmann cosmological model and the second one the
direct product R× Sn−1.

In view of Theorem 14, it is natural to ask if we can find conditions on a null hyper-
surface to be inside a null cone for more general Lorentzian manifolds. This problem was
settled for the first time in [39] where it is claimed that a totally umbilic null hypersurface in
a Lorentzian manifold of constant curvature is contained in a null cone. The proof is based
on their following claim: in a Lorentzian manifold any totally umbilic null hypersurfaces
with zero null sectional curvature is contained in a null cone. However, this is wrong
because null completeness is needed in an essential way. The example below shows a
relevant counterexample.

Example 6. Let Q×r S2 be the Kruskal spacetime [29]. Fixed u0 ∈ R, the hypersurface

Lu0 = {(u, v, x) ∈ Q× S2 : u = u0}

is totally umbilic and null. Moreover, if Π is a null tangent plane to Lu0 , then it is spanned by ∂v
and w ∈ TS2, so

K∂v(Π) = −Hessr(∂v, ∂v)

r
= 0,

but Lu0 is not contained in a null cone.

In any case, the answer to the above question is positive, but we have to assume a
strong curvature hypothesis.

Theorem 15. Let (M, g) be a geodesically null complete Lorentzian manifold with dimension
n > 3. Take L a totally umbilic null hypersurface satisfying the following properties:

1. It has never vanishing null mean curvature;
2. Ric(u, u) = 0 for all null vector u ∈ TL;
3. It is strongly inextensible.

Then, L is contained in a null cone.

An (embedded) null hypersurface L is strongly inextensible if it is inextensible in the
category of immersed null hypersurfaces. This is a necessary topological condition to avoid
naive examples.

The basic idea to prove Theorem 15 is to apply Theorem 9 to obtain a decomposition
of the rigged metric. For this, we construct a geodesic rigged vector field and an integrable
screen distribution, such that all null geodesics that start at a fixed leaf are defined in the
same interval.

As we said in Section 2, in general it does not exist a geodesic rigged vector field, but
we can construct it along a null geodesic, which is enough for our purposes.

Once this technical issues are solved, we obtain a decomposition of (L, g̃) in a neigh-
borhood along a null geodesic of the form

(
(0, b)× S,−dt2 + λ(t)2gS

)
, where λ(t) = 1− t

b
and b is a constant. Since limt→b− λ(t) = 0, the g̃-distance between the curves (t, x) and
(t, y) for fixed x, y ∈ S is converging to zero, but in this decomposition the curves (t, x) are
identified with null g-geodesics of the null hypersurface. Therefore, the null geodesics of
the null hypersurface are converging to a common point, i.e., it is contained in a null cone.
Details can be found in [37].

Now consider the following well known theorem in Lorentzian manifold.

Theorem 16. Let (M, g) be a Lorentzian manifold and γ : [0, a]→ M a null geodesic, such that
γ(a) is the first conjugate point to γ(0) along γ. Let c > 0 be a constant.

1. If c2 ≤ Kγ′(Π) for all null plane containing γ′, then a ≤ π
c ;
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2. If Kγ′(Π) ≤ c2 for all null plane containing γ′, then π
c ≤ a.

Point 1 was proved in [13] and Point 2 was proved in [19] and after in [18]. It is
a challenge to prove this theorem using the rigged metric and the classical Riemannian
version of the theorem.

There are some previous issues. First, the rigged metric is in general not complete as
we mentioned earlier in this paper. In any case, even if we can find a rigging whose rigged
metric is complete, we have the problem that the vertex and its null conjugate point, the
points of interest, do not belong to the null cone, which is the natural null hypersurface to
set the problem [40]. Additionally, the geodesic γ in the theorem need not be a geodesic for
the rigged metric.

We can see that the role of completeness in the Riemannian version of the theorem is
not crucial for our purposes because it is enough the existence of the null geodesic segment
containing a couple of candidates to be conjugate points at its ends. It is also easy to see
that we can study the problem even if both candidates are not defined in the manifold.
It is enough to take a parallelly propagated orthonormal basis and prove that the Jacobi
equation, which is a second order ordinary differentiable system in matrix form, has finite
limits when the parameter approaches the ends of the geodesic.

Let γ : (0, a) −→ L be a geodesic segment in a null hypersurface. With some abuse
of nomenclature, we will call γ(a) a conjugate point of γ(0) if a non-trivial Jacobi field J
exists along γ with

limt→0 J(t) = 0

limt→a J(t) = 0.

This wider idea is applicable to (L, g̃) which in general is a non complete Riemannian
manifold.

So, the main preliminary problem is reduced to choose a suitable rigging vector
field. Consider Lp the part of a null cone near the vertex p which is an embedding,
that is expp : Ĉ → Lp is a diffeomorphism for some open set Ĉ ⊂ Ĉe which intersects
any neighbourhood of the origin, and a null geodesic segment γ starting at p inside it
without null conjugate points in Lp. The fact that all the points in the preimage of the
geodesic segment are regular points of expp makes possible the construction of the above
diffeomorphism.

We will construct a rigging such that γ is an integral curve of the rigged vector field
which is both a g̃-geodesic and a g-geodesic in a neighborhood of γ.

Fix a timelike vector e ∈ Tp M and consider the function h : Lp → R given by

h(expp(v)) = −g(e, v),

for all v ∈ expp(Ĉe). Then ζ = ∇h is a rigging for Ce with associated rigged vector field

ξ = 1
h P, being P ∈ X(Ce) the position vector field defined by Pexpp(v)

=
(

expp

)
∗v
(v).

It is easy to see that the rigged vector field is g-geodesic and it holds ξγ(t) = γ′(t).
Since it is also a gradient, it is g̃-geodesic too, Proposition 6. So γ is a geodesic for both the
ambient and the rigged metric. This key fact, which is a nice evidence of the tuning of both
geometries, allows us to use the following theorem applied to null cones.

Theorem 17. Let (M, g) be a Lorentzian manifold, L a null hypersurface and ζ a closed rigging
for L such that its rigged vector field ξ is g-geodesic. Take γ : [0, 1]→ L an integral curve of ξ.

1. If J is a Jacobi field in (M, g) along γ with values in TL, then the projection of J onto the
screen distribution S is a Jacobi field in (L, g̃).

2. If V is a Jacobi vector field in (L, g̃) along γ with V(0) = V(a) = 0, then there exists a Jacobi
field J in (M, g) along γ with values in TL, such that J(0) = J(a) = 0.
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In particular, γ(a) is a conjugate point to γ(0) in (M, g) if, and only if, it is a conjugate point
to γ(0) in (L, g̃) and both share the same multiplicity.

To use this theorem we need an adapted index lemma and Rauch comparison theorem
for incomplete geodesics in a Riemannian manifold. We can do it following step by step
the proof in [41] taking into account a suitable convergence approaching to the ends of the
geodesic segment. We introduce the following definitions.

Definition 5. Let (L, g̃) be a Riemannian manifold and γ : (0, a)→ L an arc length parametrized
geodesic.

• If limt→0 g̃(R̃Xγ′γ
′, Y) exists for all vector fields X, Y parallel along γ and orthogonal to γ′,

then we say that the tidal force operator is converging along γ;
• If for any Jacobi vector field J : (0, a) → TL along γ with limt→0 |J(t)| = 0 it holds

|J(t)| > 0 for all t ∈ (0, a), then we say that γ has not conjugate points in the interval (0, a);
• If γ has not conjugate points in the interval (0, a) and there exists a Jacobi vector field

J : (0, a)→ TL with limt→0 |J(t)| = limt→a |J(t)| = 0, we say that γ has a conjugate point
in the limit.

Lemma 3 (Adapted Index Lemma). Let (L, g̃) be a Riemann manifold, γ : (0, a) → L an arc
length parametrized geodesic without conjugate points in the interval (0, a) and J, V : (0, a)→ TL
vector fields along γ with limt→0 |J(t)| = limt→0 |V(t)| = 0, limt→0 |J′(t)| exists, g(J, γ′) =
g(V, γ′) = 0 and J(t0) = V(t0) for some t0 ∈ (0, a). If the tidal force operator is converging
along γ and It0(V, V) exists, then It0(J, J) ≤ It0(V, V).

Theorem 18 (Adapted Rauch comparison theorem). Let (L, g̃) and (L, g) be two Riemannian
manifolds and γ : (0, a) → L, γ : [0, a] → L two arc length parametrized geodesics. Suppose
that the tidal force operator is converging along γ and take J : (0, a) → TL and J : [0, a] → TL
two Jacobi vector fields, such that limt→0 |J(t)| = |J(0)| = 0, limt→0 |J′(t)| = |J

′
(0)| and

g̃(J(t), γ′(t)) = g(J(t), γ′(t)) = 0 for all t ∈ (0, a). Then, the following statements hold.

• If γ has not conjugate points to γ(0) and K(span(γ′, v)) ≤ K(span(γ′, v)) for all v ∈ γ′⊥

and all v ∈ γ′⊥, then |J(t)| ≤ |J(t)| for all t ∈ (0, a).
• If γ has not conjugate points in the interval (0, a) and K(span(γ′, v)) ≥ K(span(γ′, v)),

then |J(t)| ≥ |J(t)|.

Now, we have all the machinery to give a new proof of the Theorem 16 following step
by step the standard Riemannian arguments with the obvious modifications. We remark
that the interest of this new proof is to make visible the powerful of the rigging technique
once we chose a rigging vector field adapted to the problem. Details can be found in [17].

An application of this theorem and Theorem 17 is the following. Null conjugate points
in Robertson–Walker spaces have maximum multiplicity [42]. These spaces are highly
symmetric and it is not clear if the result is a consequence of them or there are some hidden
conditions. The authors proved in [38] that it is also true for a null geodesic in a generalized
Robertson–Walker space provided the geodesic is contained in a totally umbilic null cone.
This suggests that it is a feature of totally umbilic null cones itself, which would be a nice
geometric significance of this family of null hypersurfaces. The following theorem shows
that it is the case [17].

Theorem 19. Let (M, g) be a Lorentzian manifold and γ : [0, a]→ M a null geodesic, such that
γ(a) is the first conjugate point to γ(0) along γ. If the null cone with vertex at γ(0) containing γ
is totally umbilic, then γ(a) has maximum multiplicity.

3.4. Compact Null Hypersurfaces

As we mentioned above, compact null hypersurfaces is another distinguished family
that deserves attention because any rigging vector field induces a complete rigged metric on
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it. Its study unveils interesting consequences, in particular several links with the properties
of the ambient space. The main reference for this subsection is [43].

Theorem 20. Let (M, g) be an orientable Lorentzian manifold of dimension dim M ≥ 4 which
verifies the reverse null convergence condition. If there is a reference frame U which is geodesic,
spatially conformal stationary and ∇(div U) = λU, where λ is a non-negative function, then any
compact totally umbilic null hypersurface is totally geodesic.

Note that for a spatially conformal stationary reference frame U (see Definition 3),
it holds

div U =
n− 1

2
ρ.

where dim M = n.
We can improve the above theorem to any compact null hypersurface, totally umbilic

or not, in the presence of the null convergence condition.

Theorem 21. Let (M, g) be an orientable Lorentzian manifold which holds the null convergence
condition. If there is a geodesic and spatially conformal stationary reference frame with conformal
function that never vanishes, then any compact null hypersurface is totally geodesic.

If U is a geodesic and spatially homothetic stationary reference frame, that is, the
conformal function is constant, then it is obvious that div U has sign, so we have.

Corollary 6. Let (M, g) be an orientable Lorentzian manifold which holds the null convergence
condition. If there is a geodesic and spatially homothetic stationary reference frame, then any
compact null hypersurface is totally geodesic.

Since null hypersurfaces are invariant under conformal changes, it seems natural
to impose some conditions on the conformal class of a Lorentzian metric to study them.
Moreover, the property of being totally umbilic is also a conformal invariant, see [38]. We
use this fact to prove the following.

Proposition 11. Let (M, g) be a Lorentzian manifold with dim M ≥ 3 furnished with a timelike
conformal vector field. If the null convergence condition holds on (M, g∗) for some g∗ in the
conformal class of g, then any compact null hypersurface in (M, g) is totally umbilic.

The important null Raychaudhuri equation states that

Ric(ξ, ξ) = ξ(H) + τ(ξ)H − trace(A∗2).

Using it and the above proposition we can show that the null hypersurface is totally
geodesic in (M, g∗), which implies that it is totally umbilic in (M, g). So we obtain the
following corollary.

Corollary 7. Let (M, g) be an orientable Lorentzian manifold with dim M ≥ 3 which obeys the
reverse null convergence condition. If there is a conformal metric g∗ to g which admits a timelike
conformal vector field and holds the null convergence condition, then any compact null hypersurface
in (M, g) is totally geodesic.

Remark 1 shows that the presence of compact null hypersurfaces in Lorentzian man-
ifolds is not general. On the other hand, Theorem 7 is a prototype result where some
curvature hypothesis prevents the existence of strict totally umbilic and compact null
hypersurfaces. In the following results we will see several obstructions to the existence of
compact null hypersurfaces. We start with the following proposition [17].
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Proposition 12. Let M be a null complete Lorentzian manifold furnished with a timelike conformal
vector field. If the null sectional curvature is positive for all degenerate plane, then it cannot exist
any topologically closed embedded null hypersurface.

The Lorentzian Berger sphere is the sphere S2n+1 furnished with the Lorentzian metric
gL = g0 − 2Ω⊗Ω, where g0 is the standard metric in S2n+1 and Ω is the g0-equivalent one
form to the Hopf vector field. It is geodesically complete, the null sectional cuvature is
positive for all null plane and the Hopf vector field is timelike and Killing [19,44]. Therefore,
using the above proposition, it does not admit any topologically closed embedded null
hypersurface.

Theorem 22. Let (M = M1 × M2, g) be a Lorentzian manifold with M1 Lorentzian and M2
non compact. If there exists a timelike vector field in M1, then M does not admit compact null
hypersurfaces.

The proof of the above result uses Remark 1 and the existence of a submersion on
M2, see [45]. It is powerful, since it can be applied to the important family of double
twisted products. In fact, if M = M1×( f1, f2)

M2 is a time orientable doubly twisted product
with (M1, g1) Lorentzian and (M2, g2) Riemannian and non compact, then M admits no
compact null hypersurfaces.

This family includes examples of generalized Robertson–Walker spaces and standard
static Lorentzian manifolds of type S1 ×( f ,1) F with F non-compact. Observe that if we
take R in this example as the first factor, then it is stably causal and we can apply directly
Remark 1 to conclude that it does not admit compact null hypersurfaces. Another example
included in the above family is the Lorentzian product M = R3 × R with metric g =
−(dt + f dx)2 + hdx2 + dy2 + dz2, being f and h smooth positive functions on R3. In
particular, taking f = ex and h = 1

2 e2x, it follows that the Gödel spacetime admits no
compact null hypersurfaces.

The following result gives us an unexpected obstruction to the existence of compact
null hypersurfaces in odd dimensional Lorentzian manifolds. Its proof is a nice argument
using the Euler characteristic, see [46].

Theorem 23. Let (M, g) be a time orientable odd dimensional Lorentzian manifold. If there is a
spacelike gradient vector field with only two critical points, then it does not admit compact null
hypersurfaces.

A convex (resp. strictly convex) function on a Lorentzian manifold (M, g) is a smooth
real-valued function whose Hessian is positive semidefinite (resp. positive definite). They
have been used in [35,47] in a semi-Riemannian setting.

In the following results, we see that the presence of convex functions restricts the
topological and geometrical properties of null hypersurfaces. This will have implication in
the causal structure showing once more the relevance of the properties of null hypersurfaces
in the ambient space through the rigging technique.

Proposition 13. If a Lorentzian manifold admits a strictly convex function and a timelike conformal
vector field, then it does not contain compact null hypersurfaces.

If (M, g) admits no timelike conformal vector field but a geodesic spatially conformal
stationary reference frame, then we obtain the following.

Proposition 14. Let (M, g) be a Lorentzian manifold admitting a strictly convex function. If there
is a geodesic spatially conformal stationary reference frame U, such that ∇(div U) = λU, where λ
is a non negative function on M, then (M, g) does not contain compact null hypersurfaces.
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Certain property on the curvature of two metrics in the same conformal class also
gives us an obstruction to the existence of compact null hypersurfaces.

Proposition 15. Let (M, g) be a Lorentzian manifold furnished with a timelike conformal vector
field. If there are g1, g2 two metrics conformal to g, such that Ric1(u, u) < Ric2(u, u) for all null
vector u ∈ TM, then there are not compact null hypersurfaces in (M, g).

The proof is based on the formula relating the Ricci curvature of two conformal metrics
and the fact that the rigged vector field is geodesic for both metrics. Observe that being a
null hypersurface is a conformal invariant, so the above proposition also implies that there
are not compact null hypersurfaces in (M, g∗) for any conformal metric g∗ to g.

The existence of a rigging vector field for a compact null hypersurfaces is very restric-
tive, because the existence of the induced rigged vector field forces the Euler characteristic
to be zero. There is another situation in which the topology of the null hypersurface
influences the existence of a rigging vector field for it. The reference for these ideas is [30].

Theorem 24. A compact null hypersurface with trivial first De Rham cohomology group does not
admit a closed rigging.

As a corollary of this theorem, a Lorentzian manifold furnished with a closed timelike
vector field does not admit compact null hypersurfaces with trivial first De Rham cohomol-
ogy group. In particular, it does not admit simply connected compact null hypersurfaces
either.

Given a rigging for a null hypersurface, we say that it is screen conformal if C = ϕB
for some ϕ ∈ C∞(L). Whereas the tensor B codifies important properties of the null
hypersurface, the tensor C codifies properties of the screen distribution. The full geometric
significance of the screen conformal condition is not well known yet. Observe that it implies
that the restriction of C to the screen distribution is symmetric, so the screen distribution
is integrable. There are important examples of null hypersurfaces which admit a screen
conformal rigging vector field. Among them, we mention its existence in generalized
Robertson–Walker spaces (in particular spaces of constant curvature), plane fronted waves,
Kruskal space, etc.

Proposition 16. Let ζ be a rigging for a compact null hypersurface L in a Lorentzian manifold of
constant curvature. If the screen distribution is conformal and the first De Rham cohomology group
is trivial, then L is totally geodesic.

Using this, we find an obstruction to the existence of a screen conformal rigging in
some class of compact null hypersurfaces.

Proposition 17. A 4-dimensional Lorentzian manifold of constant curvature with a compact null
hypersurface with finite fundamental group does not admits any screen conformal rigging.

3.5. Causality

Now we study some relationships between causality theory and null hypersurfaces.
The most immediate was given in Remark 1 of Section 3.5, where it is shown that in a stably
causal Lorentzian manifold there are not compact null hypersurfaces. Here, we will see
several implications of the properties of null hypersurfaces in causality theory. The main
reference for this subsection is [43].

The causal hierarchy and its main properties can be found in [29,48–50] for example.
In this subsection, all Lorentzian manifolds are supposed time oriented. We will use some
causality conditions that are no so frequent in the literature, so we recall their definitions.

A point p ∈ M is a future endpoint of a future-directed causal curve γ : I −→ M if
for every neighborhood O of p there exists a point t0 ∈ I, such that γ(t) ∈ O for all t > t0.
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A causal curve is future inextensible (respectively, past inextensible) if it has no future
(respectively, past) endpoints.

A future inextensible causal curve γ : I −→ M is totally future imprisoned in the
compact set C if there is t0 ∈ I such that γ(t) ∈ C for every t > t0, i.e., it enters and remains
in C. It is partially future imprisoned if for every t0 ∈ I there is t > t0, such that γ(t) ∈ C,
i.e., it continually returns to it. On the other hand, the curve escapes to infinity in the future
if it is not partially future imprisoned in any compact set.

A spacetime is non-total future imprisoning if no future inextensible causal curve is
totally future imprisoned in a compact set and it is non-partial future imprisoning if no
future inextensible causal curve is partially future imprisoned in a compact set.

In [51], it is shown that a spacetime is non-total future imprisoning if, and only if,
it is non-total past imprisoning, thus one can simply speak of the non-total imprisoning
property.

Finally, (M, g) is future-distinguishing if for every p, q ∈ M with p 6= q it holds if
I+(p) 6= I+(q).

The non-total imprisoning condition is an obstruction to the existence of compact null
submanifolds, not only hypersurfaces.

Proposition 18. A non-total imprisoning Lorentzian manifold does not contain compact null
submanifolds.

The causal hierarchy and the above proposition tell us that distinguishing, strongly
causal, stable causal, and globally hyperbolic Lorentzian manifolds cannot contain compact
null submanifolds. However, there exists causal spacetimes which contain compact null
hypersurfaces, as the following example shows.

Example 7. Consider R3 described by coordinates (t, y, z) and identify (t, y, z) and (t, y, z + 1),
as well as (t, y, z) and (t, y + 1, z + a), where a is an irrational number. The resulting manifold,
which is diffeomorphic to R× S1 × S1, with the metric

g = −(cosh t− 1)2(dt2 − dy2)− dtdy + dz2

is called Carter space. It is totally imprisoning and it is also causal, see ([52], p. 195), but
{0} × S1 × S1 is a compact null hypersurface.

A spacetime is called disprisoning if for each inextensible geodesic γ : (a, b) −→ M
and any fixed t0 ∈ (a, b) the images of each of the two maps γ|(a,t0]

and γ|[t0,b) fail to have
compact closure. It is null disprisoning if this property is satisfied for each inextensible null
geodesic. Now we see that this condition jointly with the existence of a timelike conformal
vector field also prevents the existence of compact null hypersurfaces.

Proposition 19. A null-disprisoning Lorentzian manifold admitting a timelike conformal vector
field does not contain compact null hypersurfaces.

In the proof of this proposition it is crucial the presence of the timelike conformal
vector field, because it implies that the rigged vector field is geodesic.

Now we determine conditions to add to a chronological or causal spacetime to gain
higher step in the causality hierarchy.

Theorem 25. Let (M, g) be a time orientable and null complete 3-dimensional Lorentzian manifold
satisfying the null convergence condition. Suppose that there exists a never vanishing nonspacelike
vector field which is a gradient. If (M, g) is causal, then it is non total imprisoning.

The proof uses rigging and dynamical system techniques, a result on the existence of
a null line contained in a compact minimal invariant set given in [53] and a result in [12]
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to see that in fact the above set is a compact null hypersurface. This leads us to obtain a
contradiction with the existence of a never vanishing nonspacelike vector field which is a
gradient, see Remark 1.

We can modify the argument to avoid the use of the existence of compact null hyper-
surfaces. This allows us to improve the hypothesis from causal to chronological and the
dimensional restriction.

Theorem 26. Let (M, g) be a chronological null complete Lorentzian manifold of dimension greater
than 2 which satisfies the null convergence condition. If there is a timelike conformal vector field
and a geodesic spatially conformal stationary reference frame U, such that div U never vanishes,
then (M, g) is non-total imprisoning.

If we have a timelike conformal vector field, then its unitary is spatially conformal
stationary. Therefore, we have the following corollary.

Corollary 8. Let (M, g) be a null complete Lorentzian manifold of dimension greater than 2
satisfying the null convergence condition which admits a pregeodesic timelike conformal vector field
with nowhere vanishing divergence. If (M, g) is chronological, then it is non total imprisoning.

We can avoid the condition on the divergence of the timelike conformal vector field
using a curvature hypothesis on the conformal class or the existence of a convex function.

Theorem 27. Let (M, g) be a null complete Lorentzian manifold of dimension greater than 2
satisfying the null convergence condition and furnished with a timelike conformal vector field.
Suppose that there exists a strictly convex function or some metric in the conformal class of g
holds the strict reverse null convergence condition. If (M, g) is chronological, then it is non total
imprisoning.

It is well known that a compact spacetime admitting a timelike conformal vector field
is totally vicious. This is not true if the vector field is only causal. Moreover, compact static
spacetimes are causally geodesically connected [54]. We prove that a compact spacetime
admitting a causal Killing vector field satisfying the null generic condition (see [50] for the
definition) is totally vicious. A consequence is that if the universal covering is globally
hyperbolic, then the spacetime is geodesically connected, see Theorem 29. To prove this
statement, we need to previous results [55].

Lemma 4. Let (M, g) be a Lorentzian manifold and ζ a timelike affine conformal Killing vector
field (resp. a timelike projective vector field) which is a rigging for a compact null hypersurface, then
the rigged vector field ξ is g-geodesic.

Theorem 28. If (M, g) is a compact Lorentzian manifold admitting a causal Killing vector field,
then (M, g) is totally vicious or it contains a compact achronal Killing horizon.

If, additionally, (M, g) admits a timelike projective vector field (resp. a timelike affine conformal
Killing vector field), then the Killing horizon is extremal.

In any globally hyperbolic spacetime, any two causally related points p, q can be joined
by a causal geodesic, with length equal to the time-separation between p and q. This is a
classic result due to Avez and Seifert [56,57]. This result allows us to prove the second part
of the following result.

Theorem 29. Let (M, g) be a compact Lorentzian manifold satisfying the null generic condition.
If there is a causal Killing vector field, then it is totally vicious.

Moreover, if its universal Lorentzian covering is globally hyperbolic, then it is geodesically
connected.
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Finally, we see the influence of the presence of generalized time function and quasi-
time functions in spacetimes [46,48,58].

Definition 6. A function f : M −→ R is a generalized time function if f (p) < f (q) provided
that p < q. Observe that if f is continuous, then (M, g) is stably causal.

A smooth function f : M → R is a quasi-time function if its gradient is causal and past
directed and every null segment of a null geodesic on which f is constant is injective.

Proposition 20. A Lorentzian manifold admitting a lower semi-continuous (resp. upper semi-
continuous) generalized time function does not contain compact null hypersurfaces.

Theorem 30. Let (M, g) be a null complete 3-dimensional Lorentzian manifold satisfying the
null convergence condition. If it admits a quasi-time function with compact connected level sets
non-diffeomorphic to a torus, then (M, g) is strongly causal.

Theorem 31. Let (M, g) be a null complete 3-dimensional Lorentzian manifold satisfying the null
convergence condition. If it admits a quasi-time function with null gradient and non-compact
connected level sets, then (M, g) is non total imprisoning.

3.6. Codimension Two Spacelike Submanifolds through a Null Hypersurface

There are important examples of null hypersurfaces admitting an integrable screen
distribution, which endows the null hypersurface with a spacelike foliation. This motivates
the following question: under what conditions a codimension two spacelike submanifold
contained in a null hypersurface is a leaf of an integrable screen distribution? The main
reference for this subsection is [59], where this problem is tackled. In general, there is
interest in the study of spacelike submanifolds contained in null hypersurfaces, see for
example [60–66].

If the induced screen distribution in a null hypersurface L is integrable and S is a
leaf, then we know that its second fundamental form and mean curvature vector field as
codimension two submanifold of the ambient space are

IS (X, Y) = C(X, Y)ξ + B(X, Y)N, (23)
~HS = Ω · ξ + H · N,

where Ω is the screen mean curvature given by Ω = traceS C.
On the other hand, if Σ is a codimension two spacelike submanifold contained in

L, then there is a unique null vector field η defined over Σ, such that g(ξ, η) = 1 and
TΣ⊥ = span{ξ, η}. If we call Aη : X(Σ)→ X(Σ) the Weingarten endomorphism associated
to η, Aη(U) = −(∇Uη)TΣ, then the second fundamental form and the mean curvature
vector field of Σ are given by

IΣ(U, V) = g(Aη(U), V)ξ + B(U, V)η, (24)
~HΣ = trΣ Aη · ξ + H · η.

Now, we consider Σ and the leaf S as hypersurfaces of the Riemannian manifold (L, g̃).
In this case, ξ is a g̃-unitary and normal vector field to S and we know that its second
fundamental form and mean curvature as a hypersurface of (L, g̃) are

Ĩ(X, Y) = B(X, Y)ξ,

H̃S = H · ξ.
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We need to compute the mean curvature H̃Σ of Σ as a hypersurface of (L, g̃). For this,
we decompose η according to decompositions (2) and (3) as

η = X0 + αξ + N,

where X0 ∈ S and α = g(N, η). Since N and η are in the same cone, we have α ≤ 0.
Moreover, α = − 1

2 tan2 θ, where θ ∈ [0, π
2 ) is the g̃-angle between TxΣ and S and E =

cos θ(X0 + ξ) is a vector field g̃-unitary and normal to Σ.
In the following proposition we give an explicit formula for H̃Σ assuming that the

rigged one-form ω is closed, which in particular implies that the screend distribution is
integrable.

Proposition 21. Let L be a null hypersurface of a Lorentzian manifold and ζ a rigging vector field
for it such that dω = 0. If Σ is a spacelike codimension two submanifold of M through L, then the
mean curvature H̃Σ of Σ respect to E holds

H̃Σ

cos θ
= g(~HΣ, N)−Ω− B(X0, X0) +

1
cos2 θ

H

+ cos2 θ(C(X0, X0)− g(IΣ(V0, V0), N)− τ(X0 + V0)),

where V0 = X0 + 2αξ.

We need to restrict ourselves to a small class of null hypersurfaces in order to simplify
the terms involved in the above formula. For this, in the main results of this subsection we
are going to consider null hypersurfaces which admit a distinguished rigging, that is, a
rigging such that τ = 0.

There are examples of null hypersurfaces which admit a screen conformal rigging
vector field and distinguished rigging simultaneously. For example, they do exist in those
Lorentzian manifolds cited in Section 3.4: generalized Robertson–Walker spaces, spaces of
constant curvatures, plane fronted waves and Kruskal space. On the other hand, we have
the following relations between screen conformal and distinguished riggings.

Lemma 5. Let L be a null hypersurface and ζ a rigging vector field for it.

1. If ζ is screen conformal and distinguished, then dω = 0;
2. If the screen distribution is totally umbilic (C = Ω

n−2 g ) and ζ is distinguished, then dω = 0;
3. If ζ is a conformal vector field and a screen conformal rigging, then it is distinguished.

Moreover, if the conformal factor of ζ never vanishes, then L is totally umbilic.

Now, we need to make precise the notion of ”being on one side of a leaf”. For this,
recall that the rigged vector field ξ is always pregeodesic, so the null geodesics with initial
velocity given by ξ are contained, at least locally, in the null hypersurface.

Definition 7. Suppose that ζ is a rigging vector field for a null hypersurface L with integrable
screen distribution and take S a leaf of the screen distribution. The signed distance function of S
respect to ζ is

dζ
S = Π ◦Φ−1,

where Φ is the diffeomorphism Φ : (−ε, ε)×U → V given by Φ(t, p) = expp(tξp), being U ⊂ S
and V ⊂ L open neighborhoods, and Π is the projection onto the first factor.

Take p0 ∈ Σ and S the leaf of the screen distribution through p0. If dζ
S ≥ 0 in a

neighborhood of p0 in Σ, then Σ is “on one side of S” at least locally. Moreover, Σ and S are
tangent at the point p0, since p0 is a local minimum of dζ

S. In particular, it holds Ep0 = ξp0 .
Now, we have all the necessary ingredients to apply the classical Eschenburg maxi-

mum principle to Σ and a leaf of the screen considered as hypersurfaces of the Riemannian
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manifold (L, g̃), [67]. This will provide us with some theorems ensuring that a codimension
two spacelike submanifold through a null hypersurface coincides with a leaf of the screen
distribution.

Theorem 32. Let L be a null hypersurface of a Lorentzian manifold, ζ a rigging vector field for
it and Σ a spacelike totally geodesic codimension two submanifold of M through L. Take a point
p0 ∈ Σ and let S be the leaf of the screen distribution through p0. Suppose that

1. ζ is distinguished and screen conformal;
2. dζ

S ≥ 0 in a neighborhood of p0 in Σ;
3. H(p) ≥ 0 for all p in a neighborhood of p0 in S.

Then Σ coincides with the leaf S in a neighborhood of p0.

Theorem 33. Let L be a null hypersurface of a Lorentzian manifold, ζ a rigging vector field for
it and Σ a spacelike totally umbilic codimension two submanifold of M through L. Take a point
p0 ∈ Σ and let S be the leaf of the screen distribution through p0. Suppose that:

1. ζ is distinguished;
2. ζ is screen conformal with conformal factor ϕ;
3. dH = cω for some non-positive function c ∈ C∞(L);
4. dζ

S ≥ 0 in a neighborhood of p0 in Σ;
5. H(p0) ≤ 0;
6. g(~HΣ, N) ≤ ϕH in a neighborhood of p0 in Σ.

Then Σ coincides with the leaf S in a neighborhood of p0.

Observe that even if Σ is totally geodesic or totally umbilic, L does not need to be also
totally geodesic or totally umbilic, since Equation (24) only holds along Σ.

Evidently, the conditions in the above theorems maybe are not satisfied if we change
the rigging. However, if we only change the sign of the rigging vector field, then conditions
1–3 of the above theorem still hold, although the inequalities in conditions 4–6 change. On
the other hand, since τ(ξ) = 0, using the null Raychaudhuri equation we have that

dH(ξ) = ξ(H) = Ric(ξ, ξ) + tr((A∗)2) ≥ Ric(ξ, ξ).

Thus, if Ric(ξ, ξ) ≥ 0 and H is not constant, condition 3 can not hold. This is why
Theorem 33 can not be used, for example, in the case of a null cone in a constant curvature
Lorentzian manifold.

Certainly, we need to assume many conditions in the above results, but there are
examples where we can apply them.

Example 8. Let (F, g0) be a Riemannian manifold with dimension n− 1 and define a generalized
Robertson–Walker space

(M, g) =
(

I × F,−dt2 + φ(t)2g0

)
.

Suppose that (F, g0) can be decomposed as a warped product with one-dimensional base,
(F, g0) = (J × K, ds2 + µ(s)2h0), where J ⊂ R and (K, h0) is a Riemannian manifold. The
hypersurface L given by

L = {(t, s, x) ∈ I × J × K : s =
∫ t

t∗

1
φ(r)

dr}

for some fixed t∗ ∈ I is a totally umbilic null hypersurface, i.e., B = H
n−2 g [38]. Moreover, if we

consider the rigging vector field ζ = φ∂t, then the null mean curvature is

H(t,s,x) =
n− 2
φ(t)2

(
φ′(t) +

µ′(s)
µ(s)

)
. (25)
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It is easy to see that ζ is a closed and conformal vector field, so∇Uζ = Φ′U for all U ∈ X(M)
and Proposition 3 implies that

C =

(
Hφ2

2(n− 2)
− φ′

)
g,

Ω =
Hφ2

2
− (n− 2)φ′,

τ = 0.

Therefore, the rigging vector field ζ is distinguished and if H 6= 0, then it is also screen
conformal with factor

ϕ =
φ2

2
− (n− 2)φ′

H
.

On the other hand, the leaf of the screen distribution through a point p0 = (t0, s0, x0) ∈ L is
given by S = {(t, s, x) ∈ I × J × K : t = t0, s = s0}, thus from Equation (25) we see that H is
constant on the leaves and, therefore, dH = cω for some c ∈ C∞(L).

Since ξ = − 1
φ ∂t − 1

φ2 ∂s, if we fix p0 ∈ L and S the leaf through p0, the condition dζ
S(p) ≥ 0

is equivalent to t(p) ≤ t(p0), where t : M → R is the canonical projection onto the first factor.
Moreover, the transverse vector field is N = 1

2 (φ∂t − ∂s).
We particularize the above situation to the case of the Lorentzian manifold (M, g) =(

R×Hn−1,−dt2 + g0
)
. The hyperbolic space Hn−1 can be decomposed as(

R×Rn−2, ds2 + e−2sh0

)
,

being h0 the Euclidean metric and so the null hypersurface L is given in this case by

L = {(t, t, x) : t ∈ R, x ∈ Rn−2},

which has constant null mean curvature H = 2− n respect to the rigging vector field ζ = ∂t.
Therefore, conditions 1, 2, and 3 in Theorem 33 are fulfilled and we can apply it to obtain the
following.

Suppose that Σ is a codimension two totally umbilic spacelike hypersurface in R×Hn−1

contained in L = {(t, t, x) : t ∈ R, x ∈ Rn−2}. If there is a point p0 = (t0, t0, x0) ∈ Σ, such that
t(p) ≤ t0 and g(~HΣ, ∂t − ∂s) ≤ 2− n for all p in a neighborhood of p0 in Σ, then Σ is locally
contained in {(t0, t0, x) : x ∈ Rn−2}.

We can study the coincidence of a codimension two spacelike submanifold and a leaf
of the screen distribution without using the rigged metric, but we need to assume that the
null hypersurface has zero null mean curvature and it exists a rigging vector field which is
a gradient. In this case, the screen distribution is integrable and the leaves are given by the
intersection of the level hypersurfaces of the function and the null hypersurface.

Proposition 22. Let L be a null hypersurface with zero null mean curvature and f ∈ C∞(M) a
function, such that ζ = ∇ f is a distinguished rigging vector field for L. If Σ is a codimension two
spacelike submanifold through L and p0 ∈ Σ is a point, such that

f (p0) ≤ f (p),

g(~HΣ,∇ f ) +4 f + ξg(∇ f ,∇ f ) ≤ 0

for all p in a neighborhood of p0 in Σ, then Σ coincides with a leaf of the screen distribution in a
neighborhood of p0.
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Example 9. A plane fronted wave is the Lorentzian manifold M = M0 ×R2 endowed with the
metric

g = g0 + 2dudv + φ(x, u)du2,

where (M0, g0) is a Riemannian manifold and φ : M0 ×R→ R is some function. It holds that ∂v
is a parallel null vector field in M.

Call u, v : M→ R the canonical projections. We have that

Lu0 = {p ∈ M : u(p) = u0}

is a totally geodesic null hypersurface for all u0 ∈ R. The vector field ζ = ∇v = ∂u −Φ∂v is a
rigging vector field for Lu0 and its rigged vector field is ξ = ∂v. Moreover, τ = 0 and the leaf of the
screen distribution through a point p0 ∈ Lu0 is Sp0 = {p ∈ M : u(p) = u0, v(p) = v(p0)}.

Since 4v = 0 and ∂v(g(∇v,∇v)) = 0, from the above proposition, if Σ is a codimension
two spacelike submanifold contained in Lu0 and there is a point p0 ∈ Σ, such that v(p0) ≤ v(p)
and g(~HΣ, ∂u) ≤ 0 for all p in a neighborhood of p0 in Σ, then Σ is locally contained in Sp0 .

Example 10. Suppose that L is a null hypersurface with zero null mean curvature in a generalized
Robertson–Walker space (M, g) =

(
I × F,−dt2 + φ(t)2g0

)
.

We call f : M → R the function given by f (p) = −
∫ t(p)

c φ(s)ds, being c ∈ I a fixed
point and t : M → R the canonical projection. We know that ζ = ∇ f = φ∂t is a distinguished
rigging vector field for L. Since 4 f + ξ(g(∇ f ,∇ f )) = (n− 2)φ′, Proposition 22 implies that
if Σ is a codimension two spacelike submanifold through L and p0 ∈ Σ holds t(p) ≤ t(p0) and
g(~HΣ, ∂t) ≤ − (n−2)φ′

φ in a neighborhood of p0 in Σ, then Σ is contained in the slice t = t(p0) in a
neighborhood of p0.

3.7. Black Hole Horizons

A remarkable fact of black hole horizon theory is that there exists four laws that
resembles the laws of thermodynamic. Physicists claim that this is not a mere coincidence
but a deep property of nature. In this short section we illustrate how taking a suitable
rigging we can easily prove the zeroth law of black hole thermodynamics. A review from a
physical point of view is [68].

We say that a null hypersurface L is a Killing horizon if there is a Killing vector field
K ∈ X(M), such that Kx is null and tangent to L for each x ∈ L. Killing horizons appear as
the event horizon of stationary black holes. For example, the horizon of the black hole in
Kruskal space is a Killing horizon.

A Killing horizon is necessarily totally geodesic since the null second fundamental
form B(X, Y) = −g(∇XK, Y) associated to K is symmetric and skew-symmetric for any
X, Y ∈ S . Since K is a null vector field over L, there is κ ∈ C∞(L), such that ∇KK = κK.
This function κ is called the surface gravity in the case of stationary black holes and the
zeroth law asserts that, under suitable conditions, it is constant.

To show this, we take a point p ∈ L and a spacelike codimension two submanifold
S with p ∈ S ⊂ L. We can pick a vector ζx ∈ Tx M with g(ζx, Kx) = 1 for all x ∈ S. Since
the flow Φt of K are isometries, there are ε > 0 and a open set θ with p ∈ θ ⊂ L, such
that ψ : (−ε, ε)× S → θ given by ψ(t, x) = Φt(x) is a diffeomorphism. Using it, we can
construct a rigging ζ defined in θ with associated rigged vector feld ξ = K. Moreover, ζ is
invariant by the flow of K, that is, (Φt)∗x

(ζ) = ζΦt(x) for all x ∈ S.
Observe that κ = −τ(ξ), being τ the rotation one-form associated to ζ. Since ζ

and ξ are invariant by the flow of K, which are formed by isometries, and τ is given by
τ(U) = g(∇Uζ, ξ), it follows that τ is also invariant by the flow. This implies that Lξ τ = 0.
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On the other hand, since L is totally geodesic, the Gauss–Codazzi Equations (14) and
(16) reduce to

g(RUVW, ξ) = 0,

g(RUVξ, N) = −dτ(U, V)

for all U, V ∈ X(L).
Now we suppose that it holds the null dominant energy condition, which can be

stated as follows. If we call T the stress-energy tensor, given by T = Ric− 1
2 Sg, then we

say that the null dominant energy condition holds if the metrically equivalent vector to
−T(u, ·) is causal and future directed for any null future directed vector u.

Under this condition we have that dτ(ξ, U) = 0 for all U ∈ X(L). In fact, using the
above Gauss–Codazzi equations we have

Ric(ξ, U) =
n

∑
i=3

g(RUei ei, ξ) + g(RξUξ, N) = −dτ(ξ, U)

and, therefore, dτ(ξ, U) = −T(ξ, U) for all U ∈ X(L). Since ξ is future directed and null,
the vector field W metrically equivalent to −T(ξ, ·) is causal and future directed, thus
g(W, ξ) = −T(ξ, ξ) = −dτ(ξ, ξ) = 0. It can not be both timelike and ortogonal to ξ at any
point, so it is null and orthogonal to ξ, which implies that W is proportional to ξ. Therefore

dτ(ξ, U) = −T(ξ, U) = g(W, U) = 0

for all U ∈ X(L).
Finally, using Cartan’s formula

0 =
(

Lξτ
)
(U) = d

(
iξτ
)
(U) +

(
iξdτ

)
(U) = U(τ(ξ)) + dτ(ξ, U) = U(τ(ξ)),

which means that τ(ξ) is constant on L. So we have proved the following.

Proposition 23. If a spacetime satisfies the null dominant energy condition, then the surface
gravity is constant for any Killing horizon.

4. Future Developments

We have seen that the rigging technique allows us to show a nice interplay between the
geometry of a Lorentzian manifold and the properties of the family of null hypersurfaces.
In each subsection we have selected a representative number of results where the rigging
technique has been used, showing its potential, but as it can be seen, most results could be
assigned to several subsections. Part of the philosophy is to take advantage of the rigged
metric, which is Riemannian. For example, in Proposition 4 the fact that the null mean
curvature is a divergence allows us to use Stoke’s theorem. In other cases, we have had to
choose a rigging adapted to the situation. An example is Theorem 17 where the chosen
rigging allows us to compare the null conjugate points and its multiplicities both for the
ambient metric and the rigged metric in a null cone. Another important example is that
closed riggings unveil the structure of totally umbilic null hypersurfaces as a local twisted
product, Theorem 9.

In this philosophy, it is essential to establish a relationship between the geometric
data (connexion and curvature) of the ambient space and the rigged metric. This is done
in Sections 2.1–2.3. The relations do not cover all the possible cases, but it is enough in
many situations, such as those shown in this review. It would be desirable to complete all
possible relations between these objects, perhaps under some hypotheses on the rigging
vector field, such as being closed, conformal, etc.

Three kind of null hypersurfaces are of special interest because they appear naturally
in the applications: null cones, black hole horizons, and compact null hypersurfaces.
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Null cones are studied in Section 3.3 where as we said there does exist a rigging tuning
conjugate points along null geodesics inside a suitable null cone containing it, for both
geometries, the ambient and the rigged metric. We also show a problem first settled in [39].
Given a null hypersurface, what kind of geometric properties are sufficient to ensure that it
is contained in a null cone. Totally umbilic null hypersurfaces in a Ricci flat ambient space
are candidate to be inside a null cone. This is a challenge problem and it deserves to be
studied in order to weaken the conditions, or to find another conditions. Theorem 14 is a
nice example of other possibilities.

This kind of results illustrates the importance of totally umbilic and totally geodesic
null hypersurfaces. This is studied in Section 3.1, but it is present in several other places as
we have seen. An interesting observation is that totally geodesic null hypersurfaces have an
interpretation that is the usual in the Riemannian case. On the other hand, totally umbilic
hypothesis is different because the null second fundamental form has a distinguished
direction, the rigged direction, which belongs to its kernel. So it would be interesting to
unveil the full geometric significance of totally umbilic condition for null hypersurfaces,
(we thanks J. M. M. Senovilla for pointing out this observation in a private conversation).
A first clue is Theorem 19 where it is shown that in a totally umbilic null cone, the presence
of a null conjugate point to the vertex has always maximum multiplicity, showing some
degree of maximum symmetry. The more we can say today is suggested in Theorem 9
where totally umbilic null hypersurfaces can be furnished locally with a rigged metric that
is a twisted product.

In this classification, totally geodesic null hypersurfaces are relevant because isolated
black hole horizons are examples of them. It is interesting to find ways to study problems of
physical interest with our technique. An illustration is Section 3.7 where we use a suitable
rigging to prove a version of the zeroth law of black hole thermodynamic.

One of the most important results in the rigging technique is Theorem 9 as we have
commented in several places. Twisted products with a one dimensional first factor are
examples of metrics with a distinguished direction. We can think of other possibilities for
rigging metrics with a privileged direction provided by the rigged vector field, for example
contact or Sasakian structures. These structures are related with quantum theory through
symplectic and Kähler manifolds, used in the geometric quantization program, and more
recently in quantum gravity. If this can be implemented in the horizon of a black hole, it
could be interesting to explore those possible relations.

Section 3.5 is dedicated to the influence of null hypersurfaces in the causal theory
of the ambient space, which is of interest both in geometry and physics. The importance
of this is that we are using properties of the family of null hypersurfaces to find cute
information on causality theory, which is a theory of global nature of the ambient space.
In Section 3.6 we study some special geometric properties of null hypersurfaces, such as
those through the screen distribution. This kind of ideas could be related with the study of
trapped surfaces and MOTS, of great importance in singularity theory.

In Section 3.4, we studied the family of compact null hypersurfaces. Those kind of
hypersurfaces have a transversal character, because they can be used as a tool to study
different situations including its influence in the global properties of the ambient space,
such as some results in Section 3.5, but they are interesting themselves because they
are important objects from the differential geometry point of view and exotic objects in
Lorentzian manifolds.
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