Browsing by Author "Muhammad, Aliyu"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Optimization and characterization of rice–pigeon pea flour blend using extrusion cooking proces(Wiley, 2019-12-20) Banki, Ndaliman Mohammed; Salihu, Aliyu; Muhammad, AliyuThis study was carried out to formulate rice and pigeon pea flour blend with the aim of providing nutrient-enriched and inexpensive food for developing countries where the raw materials are found in abundance. Three factors (screw speed, feed moisture content and feed blend composition) affecting the extrusion cooking process were subjected to face-centred central composite design (FCCCD), and physical properties were used as the response. Analysis of variance showed that the developed quadratic model was significant with coefficient of determinations (R2) of 0.96 for expansion index, 0.93 for bulk density and 0.88 for water absorption index. Validation experiments were carried out where four rice–pigeon pea flour blends were subjected to physical, mineral and amino acid analyses. Formulation 3 set at screw speed, feed moisture content and feed blend composition of 220 rpm, 30% and 25%, respectively, led to maximum expansion index of 9.98 ± 0.15, bulk density of 0.12 ± 0.01 g/mL and water absorption index of 6.41 ± 0.07. There was significant (p < 0.05) increase in essential amino acids in all the developed rice–pigeon pea flour blends, and Formulation 3 was found to be two- and fivefold higher in terms of methionine and lysine contents, respectively, than the control (extruded rice). Similarly, calcium (3.41 ± 0.07 mg/100 g), iron (12.64 ± 0.03 mg/100 g) and zinc (9.33 ± 0.02 g/100 g) contents in Formulation 3 were significantly (p < 0.05) higher than the values of 1.19 ± 0.13, 5.89 ± 0.10 and 2.67 ± 0.05 mg/100 g recorded, respectively, for the extruded rice (control). In conclusion, the extruded rice–pigeon pea flour blend showed better physical properties and nutritional quality than the extruded riceItem Targeting of Protein’s Messenger RNA for Viral Replication, Assembly and Release in SARS-CoV-2 Using Whole Genomic Data From South Africa: Therapeutic Potentials of Cannabis Sativa(Front. Pharmacol., 2021-09-02) Erukainure, Ochuko Lucky; Matsabisa, Motlalepula Gilbert; Muhammad, AliyuThe possible evolutionary trend of COVID-19 in South Africa was investigated by comparing the genome of SARS-CoV-2 isolated from a patient in KwaZulu-Natal, South Africa with those isolated from China, Spain, Italy, and United States, as well as the genomes of Bat SARS CoV, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), Mouse Hepatitis Virus (MHV), and Infectious Bronchitis Virus (IBV). Phylogenetic analysis revealed a strong homology (96%) between the genomes of SARS-CoV-2 isolated from KwaZulu-Natal, South Africa and those isolated from the study countries as well as those isolated from bat SARS CoV, MERS-CoV, MHV and IBV. The ability of phytocannabinoids from Cannabis sativa infusion to interact with gene segments (mRNAs) coding for proteins implicated in viral replication, assembly and release were also investiagted using computational tools. Hot water infusion of C. sativa leaves was freeze-dried and subjected to Gas Chromatography Mass Spectroscopy analysis which revealed the presence of tetrahydrocannabivarin, cannabispiran, cannabidiol tetrahydrocannabinol, cannabigerol, and cannabinol. Molecular docking analysis revealed strong binding affinities and interactions between the phytocannabinoids and codon mRNAs for ORF1ab, Surface glycoprotein, Envelope protein and Nucleocapsid phosphoprotein from SARS-CoV-2 whole genome which may be due to chemico-biological interactions as a result of nucleophilic/electrophilic attacks between viral nucleotides and cannabinoids. These results depict the spread of SARSCoV-2 is intercontinental and might have evolved from other coronaviruses. The results also portray the phytocannabinoids of C. sativa infusion as potential therapies against COVID-19 as depicted by their ability to molecularly interact with codon mRNAs of proteins implicated in the replication, translation, assembly, and release of SARS-CoV-2. However, further studies are needed to verify these activities in pre-clinical and clinical studiesItem Translational suppression of SARS-COV-2 ORF8 protein mRNA as a Viable therapeutic target against COVID-19: Computational studies on potential roles of isolated compounds from Clerodendrum volubile leaves(Elsevier, 2021-10-19) Erukainure, Ochuko L.; Atolani, Olubunmi; Muhammad, AliyuThe open reading frame 8 (ORF8) protein of SARS-CoV-2 has been implicated in the onset of cytokine storms, which are responsible for the pathophysiology of COVID-19 infection. The present study investigated the po tential of isolated compounds from Clerodendrum volubile leaves to stall oxidative bursts in vitro and interact with ORF8 mRNA segments of the SARS-CoV-2 whole genome using computational tools. Five compounds, namely, harpagide, 1-(3-methyl-2-butenoxy)-4-(1-propenyl)benzene, ajugoside, iridoid glycoside and erucic acid, were isolated from C. volubile leaves, and their structures were elucidated using conventional spectroscopy tools. Iridoid glycoside is being reported for the first time and is thus regarded as a new compound. The ORF8 mRNA sequences of the translation initiation sites (TIS) and translation termination sites (TTSs) encoding ORF8 amino acids were retrieved from the full genome of SARS-CoV-2. Molecular docking studies revealed strong molecular interactions of the isolated compounds with the TIS and TTS of ORF8 mRNA. Harpagide showed the strongest binding affinity for TIS, while erucic acid was the strongest for TTS. The immunomodulatory potentials of the isolated compounds were investigated on neutrophil phagocytic respiratory bursts using luminol-amplified chemiluminescence technique. The compounds significantly inhibited oxidative burst, with 1-(3-methyl-2- butenoxy)-4-(1-propenyl)benzene having the best activity. Ajugoside and erucic acid showed significant inhib itory activity on T-cell proliferation. These results indicate the potential of C. volubile compounds as immuno modulators and can be utilized to curb cytokine storms implicated in COVID-19 infection. These potentials are further corroborated by the strong interactions of the compounds with the TIS and TTS of ORF8 mRNA from the SARS-CoV-2 whole genome.