Comparison of the Adomian decomposition method and regular perturbation method on non linear equations second kind of Volterra

dc.contributor.authorYaro, Rasmane
dc.contributor.authorAbbo, Bakari
dc.contributor.authorFrancis, Bassono
dc.date.accessioned2023-05-20T21:04:31Z
dc.date.available2023-05-20T21:04:31Z
dc.date.issued2021
dc.descriptionEuropean Journal of Pure and Applied Mathematics, 14(3), 1044-1056.en_US
dc.description.abstractIn this paper, we study convergence of Adomian decomposition method applied to second kind Volterra general integral and show that this method and regular perturbation method converges to the same solution.en_US
dc.description.sponsorshipACE Impact: Centre for Studies, Training and Research in Social Risk Management, CEFORGRISen_US
dc.identifier.citationYaro, R., Abbo, B., Francis, B., & Paré, Y. (2021). Comparison of the Adomian Decomposition Method and Regular Perturbation Method on Nonlinear Equations Second Kind of Volterra. European Journal of Pure and Applied Mathematics, 14(3), 1044-1056.en_US
dc.identifier.issn1307-5543
dc.identifier.urihttps://doi.org/10.29020/nybg.ejpam.v14i3.4014
dc.identifier.urihttp://hdl.handle.net/123456789/1811
dc.language.isoenen_US
dc.publisherNew York Business Globalen_US
dc.subjectAdomian Decomposition Method (ADM)en_US
dc.subjectRegular Pertubation Method(RPM)en_US
dc.subjectVolterra integral equation second kinden_US
dc.subjectYoussouf Pareen_US
dc.subjectUniversité Joseph Ki-Zerboen_US
dc.subjectBurkina-Fasoen_US
dc.subjectCEFORGRISen_US
dc.titleComparison of the Adomian decomposition method and regular perturbation method on non linear equations second kind of Volterraen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Comparison of the Adomian decomposition method.pdf
Size:
387.42 KB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections