Browsing by Author "Egbuna, Chukwuebuka"
Now showing 1 - 4 of 4
Results Per Page
Sort Options
Item Antihyperlipidemic Effects of Silver Nanoparticles Synthesized from Ventilago maderaspatana Leaf Extract on Streptozotocin-Induced Albino Rats(Trop J Nat Prod Res, 2021-07-01) Karuppannan, Periyasamy; Saravanan, Kaliyaperumal; Egbuna, ChukwuebukaAn abnormally high presence of lipid in human blood is a prelude for the emergence of cardiovascular complications. In this study, effort was made to elucidate the effect of silver nanoparticles (AgNPs) produced through the help of Ventilago maderaspatana on the hyperlipidemic conditions in streptozotocin (STZ)-induced Wistar rats. AgNPs were synthesized biologically using ethyl acetate leaf extract of V. maderaspatana. The synthesis of AgNPs was confirmed when the color of the solution turned dark brown following the addition of V. maderaspatana ethyl acetate leaf extract. To confirm further, UV-Vis spectroscopy analysis was conducted which gave a peak at 430 nm. The results obtained from the FT-IR studies shows that the compounds in the plant extract may have influenced the formation of AgNPs. The result obtained from further characterization showed that the synthesized nanoparticles were spherical and ranged between 10-50 nm. The XRD study indicates crystal nature of the particles with the size of 50 nm. After the injection of STZ, the lipid profiles were altered abnormally. This can be found in group II rats (hyperlipidemic control) which had the highest level of serum total cholesterol (189.1 ± 0.80 mg/dL), triglyceride (177.9 ± 0.88 mg/dL), VLDL-c (42.5 ± 1.80 mg/dL), and LDL-c (55.2 ± 3.83 mg/dL) with the exception of HDL-c which was found low (10.4 ± 1.04 mg/dL). However, hyperlipidemic groups treated with AgNPs recorded low levels of cholesterols. Based on this, it can be concluded that biosynthesized AgNPs could be helpful in lowering cholesterol levelItem Emerging pollutants in Nigeria: A systematic review(Egbuna C, Amadi CN, Patrick-Iwuanyanwu KC, Ezzat SM, Awuchi CG, Ugonwa PO, Orisakwe OE. Emerging pollutants in Nigeria: A systematic review. Environ Toxicol Pharmacol. 2021 Jul;85:103638. doi: 10.1016/j.etap.2021.103638. Epub 2021 Mar 20. PMID: 33757839., 2021-07) Egbuna, Chukwuebuka; Amadi, Cecilia N.; Patrick-Iwuanyanwu, Kingsley C.Emerging pollutants represent a group of synthetic or naturally occurring compounds that are not normally monitored within the environment but can enter into the environment and cause different adverse ecological and health effects. This systematic review identified the various emerging pollutants in Nigeria. The following databases, ScienceDirect, PubMed, Google Scholar, and African Journals OnLine (AJOL) were searched to identify studies on pollutants of emerging concerns in Nigeria. A total of 933 articles were identified out of which 30 articles were selected to be eligible for the study. Over 250 emerging pollutants were identified and divided into 9 major groups which are personal care products, pharmaceuticals, industrial chemicals, polycyclic aromatic hydrocarbons, volatile organic compounds, pesticides, mycotoxins, radionuclides and electromagnetic radiations (Gamma radiation) and other pollutants of emerging concerns such as microbes, microplastics, and particulate matter. These pollutants are found in water bodies and underground waters, soils and sediments, biological systems, and ambient air at different concentrations with seasonal variations. Some of these pollutants act as endocrine disruptors, β-adrenergic receptors agonist blockers, oxidative stress inducers and can cause genetic alterations in DNA and epigenetic reprogramming through global DNA methylation, gene-specific CpG methylation and microRNA expression. Emerging pollutants of public health concern in Nigeria are on the increase and are threat to both ecological and human health.Item FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: in silico studies(Taylor and Francis, 2021-09-06) Egbuna, Chukwuebuka; Patrick-Iwuanyanwu, Kingsley C.; Onyeike, Eugene N.Over 30–35% of patients down with AML are caused by mutations of FLT3-ITD and FLT3-TKD which keeps the protein activated while it activates other signaling proteins downstream that are involved in cell proliferation, differentiation, and survival. As drug targets, many inhibitors are already in clinical practice. Unfortunately, the average overall survival rate for patients on medication suffering from AML is 5 years despite the huge efforts in this field. To perform docking simulation and ADMET studies on selected phytochemicals against FLT3 protein receptor for drug discovery against FLT3 induced AML, molecular docking simulation was performed using human FLT3 protein target (PDB ID: 6JQR) and 313 phytochemicals with standard anticancer drugs (Sorafenib and Gilteritinib in addition to other anticancer drugs). The crystal structure of the protein was downloaded from the protein data bank and prepared using Biovia Discovery Studio. The chemical structures of the phytochemicals were downloaded from the NCBI PubChem database and prepared using Open Babel and VConf softwares. Molecular docking was performed using PyRx on Autodock Vina. The ADMET properties of the bestperforming compounds were calculated using SwissADME and pkCMS web servers. The results obtained showed that glabridin, ellipticine and derivatives (elliptinium and 9-methoxyellipticine),mezerein, ursolic acid, formononetin, cycloartocarpesin, hypericin, silymarin, and indirubin are the best performing compounds better than sorafenib and gilteritinib based on their binding affinities. The top-performing compounds which had better binding and ADMET properties than sorafenib and gilteritinib could serve as scaffolds or leads for new drug discovery against FLT3 induced AMItem Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology(Journal of Toxicology, 2021-07-30) Egbuna, Chukwuebuka; Parmar, Vijaykumar K.; Jeevanandam, JaisonNanoparticles are of great importance in development and research because of their application in industries and biomedicine. The development of nanoparticles requires proper knowledge of their fabrication, interaction, release, distribution, target, compatibility, and functions. This review presents a comprehensive update on nanoparticles' toxic effects, the factors underlying their toxicity, and the mechanisms by which toxicity is induced. Recent studies have found that nanoparticles may cause serious health effects when exposed to the body through ingestion, inhalation, and skin contact without caution. The extent to which toxicity is induced depends on some properties, including the nature and size of the nanoparticle, the surface area, shape, aspect ratio, surface coating, crystallinity, dissolution, and agglomeration. In all, the general mechanisms by which it causes toxicity lie on its capability to initiate the formation of reactive species, cytotoxicity, genotoxicity, and neurotoxicity, among others.