The CircumVent Project: a CPAP/O2 helmet solution for non-invasive ventilation using an implementation research framework
Loading...
Date
2021-08-26
Journal Title
Journal ISSN
Volume Title
Publisher
Spinger Nature
Abstract
Background: Acute respiratory failure, a major cause of death in COVID-19, is managed with high-flow oxygen therapy via invasive mechanical ventilation. In resource-limited settings like Nigeria, the shortage of ventilators and oxygen supply makes this option challenging. Evidence-based non-invasive alternatives to mechanical ventilation such as the use of continuous positive airway pressure (CPAP) devices exist, but there have been concerns that non-invasive ventilation may expose healthcare workers to infection from aerosolized dispersion of SARS-CoV-2. We propose to evaluate the feasibility, adaptability and acceptability of a CPAP/O2 helmet solution for non-invasive ventilation among patients with COVID-19 and health workers in eight COVID-19 treatment and isolation centers in Nigeria.
Methods: The study will occur in 4 stages: (1) convene a Steering Committee of key stakeholders and recruit implementation sites; (2) use the integrated Promoting Action on Research Implementation in Health Services (i-PARiHS) framework to guide a needs assessment of treatment centers’ capacity to use high-flow oxygen therapy to treat COVID19 patients and utilize the findings to develop an implementation strategy for the use of a CPAP/O2 helmet solution; (3) build infrastructure to support training and data monitoring processes and to develop implementation protocols to evaluate the adaptability of the strategy for the use of the CPAP/O2 helmet; and (4) train health workers, distribute a CPAP/O2 helmet solution for non-invasive ventilation, pilot test the implementation strategy, and assess feasibility of its use and acceptability that includes monitoring altered risk of SARS-CoV-2 infection among healthcare workers.
Discussion: The CPAP/O2 helmet solution for non-invasive ventilation in Nigeria can serve as a scalable model for resource-poor countries, and beyond the COVID-19 pandemic, has the potential to be deployed for the treatment of pneumonia and other respiratory diseases
Description
Keywords
SARS-CoV-2, COVID-19 infection, Nigeria, Non-invasive ventilation, Implementation science, ACEPHAP, ACE: Population Health and Policy, ACE: Population Health and Policy