Asymptotic behavior of neutral stochastic

dc.contributor.authorCaraballo, Tom´as
dc.contributor.authorDiop, Mamadou Abdoul
dc.contributor.authorNdiaye, Abdoul Aziz
dc.date.accessioned2022-04-19T16:43:57Z
dc.date.available2022-04-19T16:43:57Z
dc.date.issued2014-12
dc.description.abstractThis paper deals with the existence, uniqueness and asymptotic behavior of mild solutions to neutral stochastic delay functional integro-differential equations perturbed by a fractional Brownian motion BH, with Hurst parameter H ∈ (12, 1). The main tools for the existence of solution is a fixed point theorem and the theory of resolvent operators developed in Grimmer [R. Grimmer, Trans. Amer. Math. Soc., 273 (1982), 333–349.], while a Gronwall-type lemma plays the key role for the asymptotic behavior. An example is provided to illustrate the results of this work. (c) 2014 All rights reserved.en_US
dc.description.sponsorshipFEDER and Ministerio de Econom´ıay Competitividad (Spain) under grant MTM2011-22411, and Junta de Andaluc´ıa (Spain) under the Proyecto de Excelencia P12-FQM-1492. World Banken_US
dc.identifier.citationT. Caraballo, M. A. Diop, A. A. Ndiaye, J. Nonlinear Sci. Appl. 7 (2014), 407–421. DOI: 10.22436/jnsa.007.06.04en_US
dc.identifier.urihttp://hdl.handle.net/123456789/1397
dc.language.isoen_USen_US
dc.publisherResearch Gateen_US
dc.relation.ispartofseriesDOI: 10.22436/jnsa.007.06.04;14
dc.subjectResolvent operatorsen_US
dc.subjectC0-semigroupen_US
dc.subjectWiener processen_US
dc.subjectMild solutionsen_US
dc.subjectFractional Brownian motionen_US
dc.subjectExponential decay of solutionsen_US
dc.titleAsymptotic behavior of neutral stochasticen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Asymptotic_Behavior_of_Neutral_Stochastic_Partial_.pdf
Size:
697.63 KB
Format:
Adobe Portable Document Format
Description:
Main article
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description:
Collections